IIDEEP

Extreme Scale
Technologies

H2020-FETHPC-01-2016

DEEP-EST

DEEP Extreme Scale Technologies
Grant Agreement Number: 754304

D6.4
Programming environment support report

Final

Version: 1.0
Author(s): V. Beltran (BSC)

Contributor(s): C. ClauB3 (ParTec), T. Moschny (ParTec), M. Peuten (ITWM),
P. Reh (ThinkParQ), H.C. Hoppe (Intel), B. Steinbusch (JUELICH)

Date: 31.3.2021

D6.4

Programming environment support report

Project and Deliverable Information Sheet

DEEP-EST
Project

Project ref. No.:

754304

Project Title: DEEP Extreme Scale Technologies
Project Web Site: http://www.deep-projects.eu/
Deliverable ID: D6.4
Deliverable Nature: Report
Deliverable Level: Contractual Date of Delivery:
PU* 31.03.2021

Actual Date of Delivery:

31.03.2021

EC Project Officer:

Juan Pelegrin

*— The dissemination levels are indicated as follows: PU - Public, PP - Restricted to other participants
(including the Commissions Services), RE - Restricted to a group specified by the consortium (including the
Commission Services), CO - Confidential, only for members of the consortium (including the Commission

Services).

Document Control Sheet

Title: Programming environment support report

Document ID: D6.4
Version: 1.0 Status: Final
Available at: http://www.deep-projects.eu/
Software Tool: ATEX
File(s): DEEP-EST_D6.4_Programming_Env_Support_Report.pdf
Written by: V. Beltran (BSC)
Authorship Contributors: C. ClauB3 (ParTec), T. Moschny (ParTec),

M. Peuten (ITWM), P. Reh (ThinkParQ),
H.C. Hoppe (Intel), B. Steinbusch (JUELICH)

Reviewed by:

Estela Suarez (JUELICH)
Susanne Kunkel (NMBU)

Approved by:

BoP/PMT

DEEP-EST - 754304

1 31.3.2021

http://www.deep-projects.eu/
http://www.deep-projects.eu/

D6.4

Programming environment support report

Document Status Sheet

Version

Date

Status

Comments

1.0

31.03.2021

Final

DEEP-EST - 754304

31.3.2021

D6.4 Programming environment support report

Document Keywords

Keywords: DEEP-EST, HPC, Modular Supercomputing Architecture (MSA), Exascale,
Programming environment

Copyright notice:

©2017-2021 DEEP-EST Consortium Partners. All rights reserved. This document is a project
document of the DEEP-EST Project. All contents are reserved by default and may not be
disclosed to third parties without written consent of the DEEP-EST partners, except as mandated
by the European Commission contract 754304 for reviewing and dissemination purposes.

All trademarks and other rights on third party products mentioned in this document are acknowl-
edged as own by the respective holders.

DEEP-EST - 754304 3 31.3.2021

D6.4

Programming environment support report

Table of Contents

Project and Deliverable Information Sheet

Document Control Sheet

Document Status Sheet

Table of Contents

List of Figures

List of Tables

Executive Summary

1

2

6

7

Introduction

ParaStation MPI

2.1 Modularity awareness
2.2 lIntegrationof IbGCE
2.3 MPIsupportforthe NAM o e
2.4 Projectresourcesandreferences. L L oo

The OmpSs-2 Programming Model

3.1 Runtime optimizations
3.2 Energy-aware runtime system L
3.3 Supportfor Accelerators
3.4 TAMPI extensions to supportthe NAM
3.5 Benchmarksand mini-Apps
3.6 Using OmpSs-2 on the DEEP-EST prototype

Data Analytics Programming Model
4.1 Installed Frameworks e

I/0, file system, and storage

5.1 BeeGFS Storage Plugin Infrastructure
5.2 BeeOND Integration
5.3 BeeGFS Monitoring
5.4 SIONIlib e e

Resiliency

Summary

List of Acronyms and Abbreviations

Bibliography

31
31
31
32
32

34

35

37

42

DEEP-EST - 754304 4 31.3.2021

D6.4 Programming environment support report

List of Figures

1 Division of the DEEP-EST system into networks and modules 13

2 Comparison of performance between the optimized Nanos6 runtime and the main

OpenMP runtimes on Intel Xeon (higherisbetter) 19
3 Performance results normalized to the best static configuration in SSF (1 values = 1

performance). e 20
4 Energy results normalized to the best static configuration in SSF (| values = 1 energy

efficiency). 20
5 Grafana Panels showing different properties of the SSSM BeeGFS installation. 33

DEEP-EST - 754304 5 31.3.2021

D6.4 Programming environment support report

List of Tables

1 Energy reduction improvements per benchmark 22
2 List of Data Analytics and Al frameworks required by WP1 Developers 26
3 Data Analytics and Al framework installed in the three Easybuild stages 27

DEEP-EST - 754304 6 31.3.2021

D6.4 Programming environment support report

Executive Summary

This deliverable presents the programming environment developed to support the Modular Super-
computing Architecture (MSA) proposed in the DEEP-EST project. This document extends the work
presented on Deliverables D6.2 and D6.3, with the latest developments done in each task and also
describes the maintenance experience regarding installation, bug fixing and user feedback. The origi-
nal work stated in deliverable D6.1 has been refined and adapted based on application requirements,
as well as on the new ESB design based on GPUs. The goal of the programming environment is
twofold: Firstly, to facilitate the development of new applications and the adaptation of existing ones to
fully exploit the MSA architecture. Secondly, this work contributes with optimizations and extensions
of key software components such as message-passing libraries, task-based programming models,
file systems, checkpoint/restart libraries, and data analytics and machine learning frameworks to
leverage specific hardware features that are available on the Cluster Module (CM), the Extreme Scale
Booster (ESB) and the Data Analytics Module (DAM).

DEEP-EST - 754304 7 31.3.2021

D6.4 Programming environment support report

1 Introduction

Deliverable 6.1 presented the programming environment to be developed and adapted according to
the requirements of the Modular Supercomputing Architecture (MSA) as described in D3.1 System
Architecture, as well as, to the initial requirements of the applications. In Deliverable 6.2 we described
the overall programming environment including the different components and features defined in
the initial document. We also highlighted any deviation from the original plan as required to add
better support for the new ESB design. The main goal of the programming environment is to facilitate
the development of applications so that they can effectively exploit the MSA architecture including
specific hardware features of each module. In some cases this can be achieved transparently, while
in others, modifications of the applications will be needed. In this Deliverable (D6.4) we are updating
the previous one to reflect the new developments done and the status of the different components.

The programming environment covers the most relevant parts of the software stack required to run
on a supercomputer and it includes the following components:

+ ParaStation MPI communication library (Section 2) to leverage distributed memory systems

* OmpSs-2 programming model (Section 3) to exploit many-core processors, deep memory
hierarchies and accelerators

+ Some of the most popular frameworks and libraries used for data analytics and machine
learning (Section 4)

» BeeGFS filesystem and SIONIib library (Section 5) to exploit the storage subsystem

» FTI/SCR multi-level checkpoint/restart libraries (Section 6) to enhance the application resiliency
to system faults

DEEP-EST - 754304 8 31.3.2021

D6.4 Programming environment support report

2 ParaStation MPI

While the last deliverable D6.3 presented an overview of all the MSA features developed for ParaSta-
tion MPI in DEEP-EST so far, this section of this deliverable focusses on the extensions to ParaStation
MPI that have been realised since then. This concerns in particular the implementation of wrapper
layers for the integration of IbGCE/GCE as well as lioNAM/NAM with their respective features in
ParaStation MPI. Nevertheless, in the following first section, the aspects already presented in the
previous deliverable [1] on the support of MSA-aware programming by ParaStation MPI are also
briefly revisited.

2.1 Modularity awareness

2.1.1 Modularity reflecting communicators

In order to adapt an MPI application to modularity, it is desirable to adjust also its communication
patterns to the hierarchical topology that an MSA usually has. To achieve this, the use of MPl com-
municators that reflect the underlying topology is particularly suitable. For this purpose, ParaStation
MPI provides each process with the information about its own module affiliation within the MSA in the
form of a module ID, which can be queried at application level via a corresponding extension of the
standardised MPI_INFO_ENV object. This module ID can then be used by the application as the
colour parameter when calling MPTI_Comm_split () to create modularity-aware communicators.
This is because this function divides the group of processes of an existing communicator (e.g.,
like MPI_COMM_WORLD) into disjoint subgroups based on the colours passed. By querying the
size of such a split communicator, the processes of MPI sessions spanning multiple modules can
gain knowledge about the number of processes within the module-local subgroup in addition to the
knowledge about their own module affiliation.

2.1.2 Modularity-aware MPI collectives

The information about the module affiliation is not only available to the application alone, but also
ParaStation MPI itself can use this locality information to realise adapted patterns to optimise
collective communication operations. Furthermore, this information is not only limited to the module
affiliation, but can also be extended to the node affiliation, for example. Through a recursive
use of communicators with multi-level hierarchy awareness (as described in more detail here in
Section 2.2.3), adaptations of collective communication patterns can be achieved even to multi-tier
topologies. For this purpose, such communicators each have so-called shadow communicators,
which map the communication within or between subgroups and which may themselves have also
shadow communicators. Such a chain of communicators thus represents the hierarchy, and when a
collective operation is invoked, the following scheme is applied along this chain at each level of the
hierarchy: (1) First do all gathering and/or reduction operations within the subgroups—if required.
(2) Then perform the inter-module operation with only one process per subgroup being involved.
(3) Finally, distribute the data within each subgroup in a group-local manner.

DEEP-EST - 754304 9 31.3.2021

D6.4 Programming environment support report

2.2 Integration of libGCE

2.2.1 The API of the libGCE

The libGCE is Extoll’s library intended for the low-level use of the GCE. It therefore provides an API
with a modest range of functions for the use of the accelerated collective communication patterns. This
APl semantically matches almost one-to-one with the MPI interface of the corresponding collectives.
However, it should be noted that the collectives offered by libGCE are all of non-blocking nature,
which means that computational tasks such as a reduce operation on the GCE can take place in
parallel with computations on the host nodes. Furthermore, since the interleaving of computation and
communication through the GCE promises the best performance benefits, the libGCE API covers only
those counterparts of the collectives from the MPI standard, which actually include both computation
and communication. These are in particular:

* MPI_ (I)Reduce () — gce_reduce ()

e MPI_(I)Allreduce() — gce_allreduce ()

* MPI_(I)Reduce_scatter) — gce_reduce_scatter ()
e MPI_(I)Scan() — gce_scan()

e MPI_(I)Exscan() — gce_scan_ex()

These libGCE functions, being non-blocking, return a handle that can be used for checking the
progress or completion of the operation. The functions gce_check () and gce_wait () are
available for this purpose, and the difference between these two functions is that the former is again
non-blocking, while the latter waits for the started communication pattern to be completed.

2.2.2 A wrapper layer towards libGCE

In order to provide the GCE functionalities transparently to MPI applications, an interface between
libGCE and ParaStation MPI was realised by an additional wrapper layer, being as thin as possible.
Due to the similarity of both APls, the actual mapping of the MPI collectives to libGCE operations is
in a first instance just formed by the mapping of the MPI function parameters to their counterparts on
the libGCE side plus the respective function invocation. Regarding the parameters, first the used MPI
communicator is mapped to an array of Extoll RMA2 addresses. Furthermore, the MPI data types
and the MPI reduction operations must be translated, which can be easily done by means of their
numerical values via a mapping table. It should here be noted, however, that neither derived MPI
data types nor user-defined reduction operations are supported at this point by libGCE. If such are
nonetheless used by an application when calling an MPI collective with GCE support, the libGCE
wrapper layer automatically performs a fallback to the point-to-point based communication patterns
offered by the upper MPICH layer of psmpi so that the communication is then eventually handled by
the pscom library. The same applies if the libGCE environment cannot be initialised by all processes
of an MPI session, for example, due to a lack of GCE resources. For such a case, the wrapper
layer ensures that all processes of an MPI job have a coherent view during initialization so that all
processes can perform the fallback together for the entire session.

DEEP-EST - 754304 10 31.3.2021

D6.4 Programming environment support report

Control options

If the presumed performance loss resulting from such a fallback is not to be tolerated silently, a user
can also influence fallback behaviour by setting the following environment variable accordingly:

* PSP_LIBGCE=0 — Do not use the GCE at all (even if GCE support is available).
* PSP_LIBGCE=1 — Use GCE if possible. Perform a fallback to point-to-point if not.
* PSP_LIBGCE=2 — Try to use the GCE and abort with a message if not possible.

For a more detailed analysis of GCE utilization, ParaStation MPI provides the user in addition with
a statistics feature that can be used to print the number of successful GCE operations for each
process at the end of an MPI run. This feature can be activated by setting the environment variable
PSP_LIBGCE_STATS=1.

It is assumed that libGCE is CUDA-aware so that GPU device memory pointers can be passed directly
via its APl. Nevertheless, ParaStation MPI already allows this to be switched off (for example for
debugging purpose or for performance measurements), so that the CUDA-awareness of ParaStation
MPI then takes over the handling of the GPU buffers by using point-to-point communication via pscom
for the collectives. This can be enforced by setting the environment variable PSP_LIBGCE_CUDA=0.

Progress handling

Since the GCE can perform not only interleaved but true parallel progress independently in the
background, the libGCE API does not require a function to trigger progress explicitly—which also
simplifies its integration with the progress mechanisms of ParaStation MPI. Consequently, the
implementation of MPI_Test () only needs to look at the result of the gce_check () function to
decide whether a started collective has been completed by the GCE in the meantime.

However, MPI_Wait () cannot be implemented using gce_wait () internally, since otherwise
the progress of any pending parallel point-to-point communication, as handled by pscom, is not
guaranteed and a deadlock may occur. For this reason, waiting for communication completion is
realised in the wrapper layer through alternating checks via gce_check () with the triggering of
progress in pscom.

A mock-up for testing the wrapper

In order to test the implemented wrapper layer even before the availability of the real GCE hardware,
the function prototypes of the libGCE’s API have additionally been backed by a mock-up implementa-
tion. This implementation just performs a mapping of the GCE operations back to the MPI collectives
as offered by the upper MPICH layers of ParaStation MPI through point-to-point communion. In this
way, the intended progress semantics could already be tested even without libGCE—but, of course,
with the constraint that the behaviour of the real libGCE must later match the semantics as discussed
and agreed with the experts from Extoll. Therefore, when the GCE hardware becomes available, the
developed mock-up layer should be easily replaceable by the actual libGCE.

DEEP-EST - 754304 11 31.3.2021

D6.4 Programming environment support report

2.2.3 Combining libGCE use with MSA awareness

In a first approach, GCE support in ParaStation MPI was only implemented for the non-MSA-aware
case, which means that the GCE here can only be used if all processes in an MPI session are also
part of the same Extoll network. This is because otherwise, some processes would report an error
when initialising the libGCE environment so that then, according to the fallback mechanism described
above, all processes together will choose to not use the GCE collectives.

Checking GCE usability during communicator creation

To enable MSA awareness, the initialisation of the libGCE can be delayed in ParaStation MPI until
MPI communicators are created. In this way, whenever a new communicator is created (including
MPI_COMM_WORLD), it is checked whether the libGCE environment has already been successfully
initialised and whether the processes of the respective communicator are all running on nodes with
Extoll/ GCE connectivity. In doing so, if the libGCE environment has not yet been initialised, an
attempt is made to achieve this with the set of processes in the communicator. In order to ensure
that this mechanism actually covers all processes with Extoll/ GCE connectivity of an MPI session,
this approach is combined with the shadow communicators for MSA awareness, as they have been
described in Section 2.1.1 at the beginning of this chapter. However, to combine both approaches
effectively, the latter had to be extended to feature a more generic solution for multi-level hierarchies,
as described in the following paragraph.

Multi-level hierarchy-aware communicators

For a generic support of multi-level hierarchy-aware communicators, the subdividing scheme of node
and module affiliations has been broadened so that affiliations can now be described more flexibly via
so-called badges for the processes and degrees for the topology levels. Here, badges represent the
process affiliation and thus correspond to the previous node and module IDs, whereas the associated
degree, being also an integer value, describes the respective hierarchy level. Therefore, typical
(and hence pre-defined) degrees are those that describe the node and the module affiliation levels.
However, the network affiliation, for example, can also be described via an additional degree, if this
information is not already given by the module affiliation:

* PSP_TOPO_LEVEL_DEGREE_NODES = 1024
* PSP_TOPO_LEVEL_DEGREE_MODULES = 4096

* PSP_TOPO_LEVEL_DEGREE_NETWORKS = 8192

In this example configuration, DEGREE_NETWORKS could represent the affiliation to a network
domain, which in turn may reflect the ability to use an accelerator such as the GCE jointly for
collective communication patterns.

When arranging such levels, however, it is important that the sets of processes that can be formed by
the badges at one level continue to be disjoint in the sets at levels with a smaller hierarchy degree
accordingly. This has the consequence, for example, that with a DAM module comprising an Extoll
(DAM-EXT) and a non-Extoll (DAM) part, this must logically be mapped on two sub-modules when
using the scheme above—at least if this Extoll part of the DAM module is to be described as a

DEEP-EST - 754304 12 31.3.2021

D6.4 Programming environment support report

joint GCE domain together with the Extoll nodes of the ESB. Using such a configuration scheme,
for example, in an MPI session covering multiple modules, the MPI_COMM_WORLD communicator
would then first be split into shadow communicators based on the Extoll/ non-Extoll property (i. e.,
inside / outside the GCE domain), which are only then further subdivided on the basis of the module
affiliation (e. g., like CN, ESB, DAM, and DAM-EXT, see Figure 1), and finally on node level.

CM
(InfiniBand)

m
x

—+
S

DAM DAM-EXT
(Ethernet) (Extoll)

Figure 1: Division of the DEEP-EST system into networks and modules

The use of MPI_COMM_WORLD would then lead, when using a modularity-aware collective as
described in Section 2.1.2, to a scenario where the pattern of the collective is being split in a first
instance between processes running within the GCE domain and those being part of the rest of the
network federation. In this way, the processes within the GCE domain can use the corresponding
acceleration at least on their part of the split pattern for the modularity-aware collective. However, if a
collective is not modularity-aware, the processes would detect that not all of them can use the GCE
at MPI__COMM_WORLD level during communicator creation, and would then fallback to point-to-point
communication via pscom as described above.

2.3 MPI support for the NAM

The basic concept concerning the planned integration of the NAM with the MPI environment has
already been introduced and discussed in the last deliverables [1, 2, 3], and also the shared-memory
based prototype developed at that time has already been presented there. In the meantime, however,
a lot of work has been done regarding the NAM integration to ParaStation MPI, especially driven
by the newly gained availability of the libNAM together with the Software NAM as a test vehicle.
This section therefore first reviews briefly the semantics of the integration concept, in order to go
subsequently into more detail about the wrapper layer newly implemented for the actual integration.
In doing so, the interfaces of this wrapper layer to the applications as well as towards the NAM and its
management as a shared resource are presented here.

DEEP-EST - 754304 13 31.3.2021

D6.4 Programming environment support report

2.3.1 Integrating the NAM into the MPI world

The key problem with mapping the MPI RMA interface to the libNAM API is that MPI assumes that all
target memory regions for RMA operations are always associated with an MPI process as the owner
of that memory. This means that in an MPI world remote memory regions are always addressed via a
process rank (plus handle, which is the respective window object, plus offset), whereas the lIbNAM
API only requires an opaque handle to address the respective NAM region (plus offset). Therefore,
a mapping between remote MPI ranks and the remote NAM memory regions needs to be realized.
The pursued concept for this mapping and thus for integrating the NAM semantically into the MPI
world is to adhere to the notion of an ownership in the sense that certain regions of the NAM memory
are logically assigned to certain MPI ranks. This in turn implies that the associated MPI window
regions (although globally accessible and located on a NAM) are then to be addressed via the rank
of the process to which the NAM region is logically assigned. However, it has here to be emphasised
that this is a purely software-based mapping performed by the developed wrapper layer between
ParaStation MPI and libNAM, and that no message forwarding is involved with a globally accessible
NAM.

2.3.2 A new integration layer towards libNAM

PSNAM is the name of the developed integration layer between ParaStation MPI and libNAM, which
has been rewritten from scratch during the last year of the project by incorporating all the experiences
gained from the development of the early prototype. Therefore, the semantics of the MPI extensions at
application level continue to follow the basic ideas as developed and documented in the early phases
of the project. Furthermore, in addition to the memory regions on the NAM, persistent shared-memory
regions on the compute nodes (as they were used in the early prototype for evaluation) are also still
supported by PSNAM.

Design and configuration

Basically, the design of PSNAM is so generic that, besides libNAM and regular shared-memory
regions, also other memory back-ends could easily be supported—provided that these memories are
addressable via Put and Get operations on byte granularity. Thus, the selection of such a back-end
(even if there are currently only these two available) is one of the key configuration parameters that
can be specified at application level when creating PSNAM-based MPI RMA windows. This selection
and all other parameters that go beyond the known MPI API have to be passed from the application
to the PSNAM layer in the form of string-coded key / value pairs via an MPI info object. The following
three info keys provide the basis for all further configurations:

* psnam_manifestation
* psnam_consistency

* psnam_structure

The manifestation key specifies which memory type shall be used for a region. The value for using the
NAM is psnam_manifesation_1libnam, which also corresponds to the default value. However,
since shared-memory regions in host memory are also still supported, a second valid value is here

DEEP-EST - 754304 14 31.3.2021

D6.4 Programming environment support report

psnam_manifesation_pershm, which can be used for selecting such instead. In fact, when
creating an MPI RMA window with multiple regions, each process in the communicator used can
even choose a different PSNAM manifestation of these two for the composition of the window.

At this point it should be noted that with shared-memory regions only those processes that run
locally to them on the same host can access them directly. In contrast to this, accesses to memory
regions that are not local are then to be mediated by the PSNAM layer via message-passing, but
still transparently for the MPI application. However, such a forwarding of accesses is of course not
necessary for NAM regions—at least as long as all processes are part of the Extoll network and can
hence access the NAM directly. In the case of MPI sessions running across module boundaries,
however, such a forwarding of accesses for processes outside the Extoll network could also be
realised, but which would imply significantly higher access times.

The consistency key specifies whether the memory regions of an RMA window shall be persistent
(psnam_consistency_persistent) or whether they shall be released during the respective
MPI_Win_free () call (psnam_consistency_volatile). However, it should be noted here
that the persistence that can be generated via this parameter only refers to the case of multiple MPI
sessions within a Slurm job. For persistent memory regions that are to survive also Slurm job endings,
the Slurm burst buffer extensions as developed in Task 5.4 must be used together with reservations.

Possible memory layouts

The psnam_structure key specifies the memory layout as formed by the multiple regions of an
MPI window. Currently, the following three different memory layouts are supported:

* psnam_structure_raw_and_flat
* psnham_structure_managed_contiguous

* psnam_structure_managed_distributed

The chosen memory layout also decides whether and how the PSNAM layer stores further meta-data
in the NAM regions to allow a later recreation of the structure when reconnecting to a persistent RMA
window by another MPI session.

Raw and flat This layout is intended to store raw data (i. e., untyped data) in the NAM without
adding meta-information. According to this layout, only rank 0 of the given communicator is allowed
to pass a size parameter greater than zero during the MPT_Win_allocate () call.! Hence, only
rank 0 allocates one (contiguous) NAM region forming the window and all RMA operations on such a
flat window have therefore to be addressed to target rank 0.

Managed contiguous In this case of a memory layout, again only rank 0 allocates (contiguous)
NAM space, but this space is then subdivided according to the size parameters as passed by
all processes in the respective communicator. That means that here also processes with a rank
greater than zero can pass a size greater than 0, and hence acquire a rank-addressable (sub-)region
within this window. Furthermore, the information about the number of processes and the respective

'Please note that MPT_wWin_allocate () does not have a root parameter. Therefore, rank 0 is used as a substitute.

DEEP-EST - 754304 15 31.3.2021

D6.4 Programming environment support report

region sizes forming that window is being stored as meta-data within the NAM memory. That way,
a subsequent MPI session re-connecting to this window can retrieve this information and hence
recreate the former structure of the window.

Managed distributed In such a window, each process that passes a size greater than zero also
allocates NAM memory explicitly and on its own—at least in so-called on-demand cases where the
Slurm resource management is not involved. Each process then contributes this memory as its “local”
region to the RMA window so that the corresponding NAM allocation becomes directly addressable
by the respective process rank.

2.3.3 Integration with the resource management

If the NAM memory is managed with involvement of the Slurm burst buffer plugin developed in
Task 5.4, then the PSNAM layer shall not request NAM memory from the NAM manager itself, but
use the pre-allocated memory space as provided by the plugin. For this purpose, the plugin passes
the names of such pre-allocated NAM memory regions as a colon-separated list via a environment
variable to the PSNAM layer. (NAM_ALLOCATIONS_FOR_JOB is the name of the variable that is
used for this and that might also be parsed by the application itself). In doing so, these names of
the allocations correspond to the names that the user has previously given when specifying the job’s
resource requirements. This way, either the user can take reference to these allocations explicitly
by passing their names during MPT_Win_allocate () calls via the respective info object (with
psnam_libnam_allocation_name as the info key) or the PSNAM layer can transparently check
the list passed by the plugin for suitable allocations according to a first fit policy.

However, a downside of this approach could be that an allocation might demand for a quite fine-grained
pattern of repeated allocations, potentially even of unpredictable size and/or with altering releases in
between. Such demands are taken into account with the concept of segments in the PSNAM layer: A
segment is a PSNAM meta-manifestation that maintains a size and offset information for a sub-region
within a larger allocation. This offset can either be set explicitly via psnam_segment_offset
by the application (e.g., for splitting an allocation among multiple processes, quite similar to the
managed contiguous layout described above), or it can be managed dynamically and implicitly by the
PSNAM layer (e.g., for using the memory of an allocation for multiple MP1 windows). Moreover, this
concept of segments can also be applied recursively, which means that an allocation that has already
been divided into segments can even be further sub-divided into sub-segments, and so forth. This
can thus make the handling of pre-allocated NAM memory regions quite flexible—but potentially also
quite complex.

2.4 Project resources and references

Unfortunately, at the time of writing this deliverable, neither the GCE nor a real hardware NAM were
available for further evaluation. Although the development of the MPI integration could be significantly
advanced, especially by using the Software NAM, final tests and particularly the evaluation of the use
of the new features by applications are still pending.

DEEP-EST - 754304 16 31.3.2021

D6.4 Programming environment support report

At this point, we would therefore like to refer to the various places in the project where resources and
documentation regarding the results of Task 6.1 can already be found:

» Sources of ParaStation MPI with PSNAM extension: (check branches named psnam-integration«)
gitlab.version.fz—juelich.de/DEEP-EST/psmpi

« BSCW folder with the early NAM integration proposal and the current version of the user manual:
bscw.zam.kfa-juelich.de/bscw/bscw.cgi/2723001

» Wiki page of the project with documentation about the usage of ParaStation’s MSA features:
deeptrac.zam.kfa-juelich.de:8443/trac/wiki/Public/ParaStationMPI

As soon as further results are available, they will be added to these places accordingly.

DEEP-EST - 754304 17 31.3.2021

https://gitlab.version.fz-juelich.de/DEEP-EST/psmpi
https://bscw.zam.kfa-juelich.de/bscw/bscw.cgi/2723001
https://deeptrac.zam.kfa-juelich.de:8443/trac/wiki/Public/ParaStationMPI

D6.4 Programming environment support report

3 The OmpSs-2 Programming Model

The OmpSs-2 programming model has been extended through the project’s duration to meet the
MSA architecture’s specific requirements. In this chapter, we focus on the work done since the
last deliverable on five particular areas. In Section 3.1, we describe runtime optimizations to deal
with fine-grained tasks, in Section 3.2, we present several techniques to make our runtime more
energy-efficient, in Section 3.3, we explain how we can leverage CUDA and OpenACC kernels from
OmpSs-2, in Section 3.4, we describe the extensions done in TAMPI to support the NAM. Finally, in
Section 3.5, we present several benchmarks to illustrate the OmpSs-2 features.

3.1 Runtime optimizations

Task-based programming models like OmpSs-2 and OpenMP provide a flexible data-flow execution
model to exploit dynamic, irregular, and nested parallelism. Providing an efficient implementation that
scales well with small granularity tasks remains a challenge, and bottlenecks can manifest in several
runtime components.

OmpSs-2 has three main components: the dependency system, the task scheduler, and the memory
allocator, which tightly interact with each other. The first stage of a task’s life cycle is its creation, which
involves the memory allocator. The runtime then checks its data dependencies to determine if the
task is ready or blocked based on the previous tasks’ dependencies. Once all its dependencies are
satisfied, the task becomes ready and is added to the scheduler, which will eventually schedule it on
an available core. Once the task has been executed, it releases its dependencies so that its successor
tasks may become ready. Note that the three components require a synchronization mechanism as
they have to deal with multiple requests simultaneously. Thus, the application developer has to strike
a balance in task granularity: it has to be small enough to provide sufficient work for all available
cores while being coarse enough to evade runtime system overheads.

However, as applications scale out to more cores (or nodes) and the problem size remains constant,
task granularities naturally decrease. At some point in the scaling process, tasks can become so
small that the application is overhead-bound, and the scalability depends on the ability of the parallel
runtime to handle small tasks.

The proliferation of many-core architectures and workloads with irregular parallelism and load im-
balance have shifted the focus from traditional fork-join parallelism to task-based parallelism. Never-
theless, task management costs are still an important source of overhead, especially when using
fine granularities. We have enhanced two critical components of the runtime system to manage
fine-grained tasks: the dependency system and the scheduler. We have combined both with a
state-of-the-art memory allocator to achieve very competitive performance. We have introduced
a novel wait-free approach to implementing dependency management inside a parallel runtime.
We have also defined the Atomic State Machine concept and its restrictions and formalized its
wait-freedom. Additionally, we proposed a novel Delegation Ticket Lock that delivers very good
performance compared to other state-of-the-art locks, while keeping the simplicity in the development
of scheduling internals and policies. We also identified the critical contention bottleneck caused by
memory management and tackled the problem by leveraging the jemalloc state-of-the-art scalable
memory allocator. Finally, we implemented highly-detailed instrumentation to provide information

DEEP-EST - 754304 18 31.3.2021

D6.4 Programming environment support report

—eo— Nanosb6 —— GCC —+— Intel —=— LLVM
Heat miniAMR
100 1 100 1
75 1 751
50 - 50 - ./%//'
25 25+
% 0 2'17 2'19 2'21 2'23 0 2'19 2:20 2'21 2'22
£ Dot Product Cholesky
£ 100 100
[0}
[a 8
8 751 751
N
©
E 50 - 50 1
2
25 251
0 T T T T T T 0- T T T T T
213 215 217 219 221 223 217 219 221 223 225

Task granularity (# instructions)

Figure 2: Comparison of performance between the optimized Nanos6 runtime and the main OpenMP
runtimes on Intel Xeon (higher is better)

from both application and kernel levels, while introducing minimal overhead. Such a tool is crucial
to identify and analyze bottlenecks in modern runtime systems. Our detailed evaluation presented
at [13] assesses the performance of the different components separately and together, showing
important performance improvements compared to (1) the previous version of the runtime system,
and (2) state-of-the-art runtime systems such as Intel OpenMP, GNU GOMP and LLVM OpenMP.

Figure 2 shows the normalized performance of three state-of-the-art OpenMP runtimes and the
optimized Nanos6 runtime on a Intel Xeon-based system. The problem size is fixed for each
benchmark and the task granularity is measured in number of instructions. The results are really
positive, as in all of the benchmarks, the best performance in small granularity tasks is provided by
the Nanos6 runtime. In some cases, a higher peak performance is also achieved. This happens when
the ideal block size for a specific benchmark is small enough that performs better in one runtime than
another.

3.2 Energy-aware runtime system

Hardware and software techniques such as dynamic voltage and frequency scaling (DVFS) for
core and uncore units or dynamic concurrency throttling (DCT) can be useful to save energy while
maintaining performance. These techniques are complementary and can be used together. However,
it is not easy to use them, as they have to be adjusted dynamically based on the workload, so it is even

DEEP-EST - 754304 19 31.3.2021

D6.4 Programming environment support report

more complex to combine them properly. Ideally, these techniques should be applied transparently,
without relying on application developers. To that end, we have extended Nanos6 runtime system with
an infrastructure that categorizes workloads based on their computational profile: memory-bounded,
compute-bounded, or balanced. This categorization is done in an on-line manner and with negligible
overhead. With this additional information, we have enhanced the CPU-manager and scheduler of
OmpSs-2, to automatically combine DVFS and DCT techniques at the core and uncore level based
on workload characteristics.

Our analysis, submitted to [14], shows that combining these techniques can provide up to 15%
better energy efficiency on average, achieving the energy efficiency of the best static configuration,
and, in some situations, even improve performance in applications. Furthermore, we observed that
using DCT for memory-bounded phases provides more benefits than using per-core DVFS. Finally,
our findings can be summarized as an effective heuristic, which combines: (i) a DCT heuristic for
memory-bounded phases, and (ii) an uncore DVFS heuristic for compute-bounded phases.

Below, we compare the vendor OpenMP implementation (IOMP), the baseline OmpSs-2 execution
(OSS), a version of OmpSs-2 using core and uncore DVFS techniques (DVFS (uncore + core)), and
a version of OmpSs-2 using the uncore DVFS technique in combination with the DCT technique
(DVFS (uncore) + DCT). Thus, for memory-bounded phases we use DCT, while for compute-bounded
phases we use DVFS. We normalize all the results to the best static configuration, having tested all
the possible number of cores and every available frequency as well.

1.30
1.20

110 + n

1.00 F—m

090 |

0.80 | H

070 |_|
0.60 . L IF,

CHOL DOTP HEAT HPCCG LULE AMR SAXPY NBODY NQUEENS STREAM
| BIOMP OOSS BDVEFS (core + uncore) BDVES (uncore) + DCT |

Normal. Perf.

Figure 3: Performance results normalized to the best static configuration in SSF (1 values = 1
performance).

1.30 —
1.20 — - —
1.10 m M — M

1.00
0.90

0.80 I

0.70 . . =

CHOL DOTP HEAT HPCCG LULE AMR SAXPY NBODY NQUEENS STREAM
| mIOMP ©OSS @©DVES (core + uncore) MDVES (uncore) + DCT |

Normal. Energy

Figure 4: Energy results normalized to the best static configuration in SSF (| values = 1 energy
efficiency).

The overall results for all benchmarks show that performance is similar across all versions. When

employing DVFS for both core and uncore units, we see that for MultiSAXPY and Cholesky, the per-
formance worsens. Since some of these benchmarks have memory-bounded and compute-bounded

DEEP-EST - 754304 20 31.3.2021

D6.4 Programming environment support report

phases, when decreasing the frequency of cores at a memory-bounded phase the performance
suffers while executing compute-bounded kernels. For this reason, we include the last series in
these plots, where we use DCT for core units and DVFS for uncore units, combining the best of both
heuristics. In miniAMR we notice an increase of performance due to the previously explained reasons
for the DCT heuristic. On the other hand, for the combination of DCT and DVFS (uncore) heuristics,
we notice how the slowdowns for both Cholesky and MultiSAXPY disappear, as the negative effects
of DVFS core are nonexistent, and for Heat and miniAMR we see improvements in performance.
These are the mirrored improvements from the DCT heuristic combined with the benefits from using
DVFS uncore.

Figure 4 shows the energy results of our DVFS heuristics. To ease readability we also include Table 1,
which summarizes the average reduction in energy per benchmark of the DVFS (uncore) + DCT
heuristic when compared to the baseline OmpSs-2 version (Energy wrt OSS), and average energy
consumption reduction per benchmark when compared to the best static configuration (Energy wrt
Optimal). In this last column, negative numbers indicate how close the energy consumption of our
heuristics is to the energy consumption of the manually found static optimal. When obtaining the
best static configurations by tweaking frequencies, we noticed that using DVFS uncore can benefit:
(i) purely compute-bounded benchmarks by decreasing the frequency, but also (i) memory-bounded
phases in benchmarks by maximizing the frequency. In this last scenario, energy consumption is
reduced by maintaining a static frequency in highly memory-bounded phases. As shown in the figure,
for all benchmarks the energy consumption of the combination of heuristics (DVFS (uncore) + DCT)
is always lower than the energy consumption of the OmpSs-2 baseline (OSS). Furthermore, the
energy consumption of this version is always close to the best static configuration. As seen in Table 1,
for compute-bounded benchmarks, we notice a considerable reduction of energy consumption due
to DVFS uncore, more specifically 22% and 17% for NBody and NQueens, respectively. In other
benchmarks where compute and memory-bounded phases are balanced (such as Cholesky, Lulesh
and HPCCG), DVFS uncore also enables a reduction of the energy consumption, making it identical
to the best static configuration by reducing it by 11% and 10% for Cholesky and Lulesh, or bringing
it closer for HPCCG, with a reduction of 3%. Lastly, for memory-bounded benchmarks we notice a
considerable reduction of energy consumption when compared to the baseline OmpSs-2 version.
Specifically the energy consumption reductions are 21% for Dotproduct, 8% for Heat, 30% for
miniAMR, 10% for MultiSAXPY, and 11% for STREAM.

Even though some these reductions may only account for 10% globally, it is important to notice that
in almost every scenario, the energy consumption obtained using these heuristic meets the one
reported by the best static configuration. In average, the energy consumption of all scenarios for
the DVFS (uncore) + DCT when compared to the average energy consumption for the best static
configurations is around 102%. This shows that in average, our heuristics are able to match the
energy consumption of the best static configuration, and as previously shown, even improve it.

3.3 Support for Accelerators

The OmpSs-2 programming model supports accelerators by leveraging kernels written in other
programming languages such as CUDA C, OpenCL C or OpenACC. These kernels are annotated like
regular tasks, specifying the input and output parameters. With this information the OmpSs-2
runtime can coordinate the execution of tasks on the CPUs and kernels on the GPUs, managing the

DEEP-EST - 754304 21 31.3.2021

D6.4 Programming environment support report

Energy wrt OSS (%) Energy wrt Optimal (%)

CHOL 11.3% 0.2%
DOTP 21.7% 6.1%
HEAT 7.8% 7.7%
HPCCG 2.3% -14.0%
LULE 10.1% -0.4%
AMR 29.7% 17.6%
SAXPY 10.0% -7.6%
NBODY 21.89% -5.5%
NQUEENS 16.9% -0.3%
STREAM 10.9% -2.4%
AVERAGE 14.2% 0.15%

Table 1: Energy reduction improvements per benchmark

synchronization between tasks and kernels transparently. The data transfers between the host and the
accelerator memory are also transparent to the application developer. There are two implementations
of this feature, one that relies on specific hardware support to provide Unified Memory and another
that is fully managed by the runtime system by using a directory/cache [15] to track data locations
and perform the required memory transfers.

Besides normal CUDA kernels, OmpSs-2 runtime has also been extended to leverage optimized
kernels provided by libraries such as cuBLAS and cuSolver, making it easier to port applications that
rely on those kernels.

The OpenACC support for OmpSs-2 [16] has been developed in the context of the EPEEC project.
This feature allows the use of OpenACC annotations in sequential code to generate optimized kernels
that can run on the GPU.

Section 3.5 describes several benchmarks modified to illustrate how OmpSs-2 applications can
leverage CUDA and OpenACC kernels to exploit the ESB GPUs.

3.4 TAMPI extensions to support the NAM

The development of the Task-Aware MPI (TAMPI) library? was started in the context of the INTER-
TWinE H2020 project. This library extends the functionality of standard MPI libraries by providing
new mechanisms for improving the interoperability between parallel task-based programming models,
such as OpenMP or OmpSs-2, and both blocking and non-blocking MPI operations. By following
the MPI Standard, programmers must pay close attention to avoid deadlocks that may occur in
hybrid applications (e.g., MPI + OpenMP) where MPI calls take place inside tasks. This is given
by the out-of-order execution of tasks that consequently alter the execution order of the enclosed
MPI calls. The TAMPI library ensures a deadlock-free execution of such hybrid applications by

'EPEEC Project funded by European Union’s Horizon 2020 research and innovation programme under grant agreement
Ne801051
2Task-Aware MPI [17] https://github.com/bsc-pm/tampi

DEEP-EST - 754304 22 31.3.2021

https://github.com/bsc-pm/tampi

D6.4 Programming environment support report

implementing a cooperation mechanism between the MPI library and the parallel task-based runtime
system. Moreover, applications that rely on TAMPI do not require significant changes to allow the
runtime to overlap the execution of computation and communication tasks. TAMPI provides two
main mechanisms: the blocking mode and the non-blocking mode. The blocking mode targets
the efficient and safe execution of blocking MPI operations (e.g., MPI_Recv) from inside tasks,
while the non-blocking mode focuses on the efficient execution of non-blocking or immediate MPI
operations (e.g., MPI_Irecv), also from inside tasks. TAMPI is compatible with mainstream MPI
implementations that support the MPI_THREAD_MULTIPLE threading level, which is the minimum
requirement to provide its task-aware features.

In the previous deliverable we detail the blocking and non-blocking modes of TAMPI. In this one, we
will summarize the extensions done in TAMPI to support also MPI one-sided operations inside tasks.
With this additional support we will be able to access the NAM memory leveraging the extensions of
ParaStation MPI described in Section 2.3.

3.4.1 One-sided operations

As described in Chapter 2, ParaStation MPI has been extended to access NAM memory using the
standard MPI_Get, MPI_Put, and MPI_Win_fence operations. Both MPI_Get, MPI_Put are
non-blocking, so they can be safely used inside tasks. However, MPT_Win_ fence, which is used to
ensure that any previous MPI_Get and/or MPI_Put operation on a given MPI window has been
completed, is a blocking operation and cannot be safely used inside tasks. To support MPT_Win_—
fence on TAMPI we need a non-blocking version that, unfortunately, does not exist in the latest MPI
standard. To address this situation, we have extended ParaStationMPI to support a non-blocking
version that we call MPI_Win_ifence. This version has the same parameters as the original
MPI_Win_fence but adds an extra parameter that is an MPI_Request, which can be tested using
the standard MPI_test functions. With this additional function we have extended both the blocking
and non-blocking interface of TAMPI to support MPI_Win_fence and MPI_Win_1ifence inside
tasks. Now it is possible to perform get, put and fence operations inside tasks safely to either access
remote memory from another rank or on the NAM. Section 3.5.2 explains how we have used TAMPI
one-sided operations to implement the halo-exchange in the Heat-Equation benchmark, as well as,
saving the problem state on the NAM for each iteration.

3.5 Benchmarks and mini-Apps

We have used several well-known benchmarks and mini-apps to demonstrate the new features
implemented in OmpSs-2. To that end, we have first ported these benchmarks and mini-apps from
pure MPI or hybrid MP1+OpenMP fork-join model to a hybrid TAMPI + OmpSs-2 data-flow model. It
is worth noting that moving from pure MPI or fork-join model to a data-flow model based on tasks
already requires a significant effort. This is why large and complex applications have not been
evaluated in the context of this project, as porting them to a task model will require a huge effort that
currently cannot be justified by the expected performance improvements.

DEEP-EST - 754304 23 31.3.2021

D6.4 Programming environment support report

The miniAMR [12], Lulesh [11], HPCCG [11] have been ported to OmpSs-2 model to evaluate TAMPI
and worksharing tasks. A distributed version of Cholesky and HPCCG benchmarks have been
extended to evaluate OpmSs-2 support of CUDA and OpenACC, as well as, the MSA architecture.

3.5.1 HPCCG and Cholesky benchmarks

The original OmpSs-2 versions of HPCCG and Cholesky benchmarks have been modified to run on
the ESB. To that end, all the tasks have been changed by optimized CUDA kernels from cuBLAS and
cuSolver libraries. It is worth noting that for both applications its structure remains the same, and the
runtime system is managing the synchronisation between CUDA kernels. The HPCCG version has
also been extended to replace some of the optimized CUDA kernels with versions generated with
OpenACC. Finally, an MSA-aware version of both benchmarks have also been developed. In this
versions some of the kernels run on the cluster nodes, while others, run on the ESB. Both intra-cluster
and inter-cluster communications have been implemented using TAMPI. All these versions, as well
as, detailed instructions to execute them on the MSA are available in the project GitLab repository.3:*

3.5.2 Heat Equation

In this section, we exemplify the use of TAMPI one-sided primitives through the Heat benchmark.
We use an iterative Gauss-Seidel method to solve the Heat equation, which is a parabolic partial
differential equation that describes the distribution of heat in a given region over time. This benchmark
simulates the heat diffusion on a 2D matrix of floating-point elements during multiple time steps. The
2D matrix is logically divided into 2D blocks and may have multiple rows and columns of blocks. The
computation of an element at position M[r] [c] in the time step t depends on the value of the top
and left elements (M[r-1] [c] andM[r] [c—1]) computed in the current time step t, and the right
and bottom elements (M[r] [c+1] and M[r+1] [c]) from the previous time step t-1. We can
extrapolate this logic in the context of blocks so that a block has a dependency on the computation of
its adjacent blocks. Notice that the computation of blocks in a diagonal is fully concurrent because
there is no dependency between them.

There are three different MPI versions, and all of them distribute the 2D matrix across ranks assigning
consecutive rows of blocks to each MPI rank. Note that the matrix is distributed by blocks vertically
but not horizontally. Therefore, an MPI rank has two neighboring ranks: one above and another
below. The exceptions are the first and last ranks since they have a single neighbor. This distribution
requires the neighboring ranks to exchange the external rows (halos) from their boundary blocks in
order to compute their local blocks in each time step.

This benchmark is available in the DEEP-EST public Gitlab repository.® The first version is based on
an MPI-only parallelization, while the other two are hybrid MPI+OmpSs-2 leveraging tasks and the
TAMPI library. We briefly describe each one below:

Shttps://GitLab.version.fz—juelich.de/DEEP-EST/ompss—2-benchmarks/—/tree/master/
hpccg

*https://GitLab.version.fz-juelich.de/DEEP-EST/ompss-2-benchmarks/-/tree/master/
cholesky-mpi-oss

Shttps://pm.bsc.es/GitLab/DEEP-EST/apps/Heat

DEEP-EST - 754304 24 31.3.2021

https://GitLab.version.fz-juelich.de/DEEP-EST/ompss-2-benchmarks/-/tree/master/hpccg
https://GitLab.version.fz-juelich.de/DEEP-EST/ompss-2-benchmarks/-/tree/master/hpccg
https://GitLab.version.fz-juelich.de/DEEP-EST/ompss-2-benchmarks/-/tree/master/cholesky-mpi-oss
https://GitLab.version.fz-juelich.de/DEEP-EST/ompss-2-benchmarks/-/tree/master/cholesky-mpi-oss
https://pm.bsc.es/GitLab/DEEP-EST/apps/Heat

D6.4

Programming environment support report

Detailed instructions on how to compile and run this benchmark in the DEEP-EST system can be
found in the DEEP Trac.®

1.

01.heat_mpi: A straightforward MPI-only implementation using blocking MPI primitives
(MPI_Send and MPI_Recv) to send and receive the halo rows. The computation of blocks
and exchange of halos inside each rank is completely sequential.

02.heat_itampi_ompss2_tasks: A hybrid MPI+OmpSs-2 version leveraging TAMPI
that performs both computation and communications using tasks with data dependencies. It
instantiates a task to compute each of the blocks inside each rank and for each of the time
steps. It also creates sending and receiving tasks to exchange the block halo rows for each of
the boundary blocks. The execution of tasks follows a data-flow model because tasks declare
the dependencies on the data they read/modify. Moreover, communication tasks call non-
blocking MPI primitives and leverage the non-blocking mechanism of TAMPI (TAMPI_Iwait),
so communications are fully non-blocking and asynchronous from the user’s point of view.
Communication tasks issue non-blocking communications that are transparently managed and
periodically checked by TAMPI. These tasks do not explicitly wait for their communication, but
they delay their completion (asynchronously) until their MPI communications finish.

03.heat_tampirma_ompss2_tasks: Animplementation similarto 02 .heat_itampi_-
ompss2_tasks but using MPlI RMA operations (MPI_Put) to exchange the block halo rows.
This program leverages the MPI active target RMA communication using the MPI window
fences to open/close RMA access epochs. It uses the TAMPI library and the new integration for
the MPI_Win_ifence synchronization function. In this way, we use TAMPI_Iwait to bind
the completion of a communication task to the finalization of a MPI_Win_ifence. Therefore,
the opening/closing of RMA access epochs is completely non-blocking and asynchronous
from the user point of view. We assume the calls to MPI_Put are non-blocking. Finally,
as an optimization, we register multiple MPI RMA windows for each rank to allow concurrent
communications through the different RMA windows. Each RMA window holds a part of the halo
row that may belong to multiple logical blocks. Each communication task exchanges the part of
the halo row assigned to a single MPI window. Finally, MPI_Put and MPI_Win_ifence are
also used to save the state of each iteration on the NAM using tasks, so the state of the whole
simulation is available for analysis after the program ends.

3.6 Using OmpSs-2 on the DEEP-EST prototype

To facilitate the use of the programming model including its tool chain for application developers,
there are manuals and tutorials.” Furthermore, on the DEEP-EST TRAC? there is information on
how to load modules, compile and trace applications on the DEEP-EST prototype. This information is
periodically updated to reflect any change on the software stack or the DEEP-EST prototype system.

®https://deeptrac.zam.kfa-juelich.de:8443/trac/wiki/Public/User_Guide/TAMPI_NAM
"https://pm.bsc.es/ompss—2
Shttps://deeptrac.zam.kfa-juelich.de:8443/trac/wiki/Public/User_Guide/OmpSs-2

DEEP-EST - 754304 25 31.3.2021

https://deeptrac.zam.kfa-juelich.de:8443/trac/wiki/Public/User_Guide/TAMPI_NAM
https://pm.bsc.es/ompss-2
https://deeptrac.zam.kfa-juelich.de:8443/trac/wiki/Public/User_Guide/OmpSs-2

D6.4 Programming environment support report

4 Data Analytics Programming Model

The previous Deliverable D6.3 did report on the set of frameworks for data analytics or Al installed
on the DEEP-EST prototype, per the request of WP1 application developers. The tool chosen to
manage the complex set of often interdependent SW packages is Easybuild, and this chapter gives
an update on the installed frameworks in the first section. The installation status at the time of writing
the document does reflect and satisfy the needs of the WP1 developers, and of third party users in
the context of the Early Access Program.

The second chapter gives an update on the programming tools and frameworks used for the Intel
FPGAs in the Data Analytics Module, the persistent memory toolkit and the third section summarises
the activities around the new oneAPI programming interface and the Intel oneAPI toolkits.

4.1 Installed Frameworks

To accommodate requests for urgent updates or extensions of the installed set of SW packages and
at the same time provide a stable platform for code development and benchmarking, three different
Easybuild stages were created:

 Production stage (currently Stage 2019a): stable set of fully functional, usually downstream
package versions, fully compatible with the base OS and supported by the WP1 support team

» Development stage (currently Devel-2019a): set of updated packages which are not yet
considered fully stable, may require kernel updates to the base OS, and are candidates for
future inclusion in the Production stage

» Early development stage (currently Devel-2020): upstream versions of packages which are
seen as potentially unstable, introduce significant changes (maybe even in APIs), and require
base OS updates or even upgrades

This staged approach is of particular importance for data analytics and Al frameworks, since the
progress in package and API development is very brisk here, and changes between versions can
be sweeping. A good example is TensorFlow, which in version 2.x did change over to a completely
different backend architecture, breaking tools which support the backend and substantially changing
performance characteristics.

Table 2 shows the updated list of packages required by the WP1 developers. Table 3 indicates the
installed package versions for the above mentioned three stages.

Partner Application Requirements

KU Leuven DLMOS Python, PyTorch, scikit-learn, mpidpy

Uol Deep Learning Python, TensorFlow, Keras, Horovod

CERN CMS Apache Spark, BigDL, Python, TensorFlow, Keras, Dist-Keras

Table 2: List of Data Analytics and Al frameworks required by WP1 Developers

DEEP-EST - 754304 26 31.3.2021

D6.4 Programming environment support report

Stage Package Python Intel ParaStation MPI

27 | 3.6 | 3.7 | 3.8 | MPI | GPGPU | x86 | x86 MT
Python-GCCcore-8.3.0 Y
Pytorch-1.1.0-GCCcore-MKL-8.3.0
scikit-GCCcore-8.3.0 Y
mpi4py-3.0.1 Y
TensorFlow-1.13.1-GCCcore-8.3.0
Keras-2.2.4-GCCcore-8.3.0

Python-GCCcore-8.3.0
Devel-2019a | Pytorch-1.4.0-GCCCore-8.3.0
Horovod-0.16.2

Python-GCCcore-8.3.0

PyTorch-1.7.0
scikit-GCCcoreMKL-9.3.0
mpi4py-3.0.3
TensorFlow-2.3.1-GCCcoreMKL-9.3.0

Production

<|=<|=<|<|=<|=<|=<]|=<]|=<

Devel-2020

<|=<|=<|=<|=<

Table 3: Data Analytics and Al framework installed in the three Easybuild stages

As before, the complete software stack available on the DEEP-EST prototype can be evaluated with
the module spider command. With the current installation workflow, adding a new framework can
usually be carried out without too much effort; however, certain packages like Horovod have proven to
cause a lot of extra work, partly because of the dependency to the binary interfaces of all supported
MPI implementations and partly because of very numerous and complex inter dependencies with
other packages.

Moreover, the highly optimised, extensively threaded mathematics routines for scientific applications
in HPC (Intel MKL and NVIDIA cuBLAS) along with the latest Deep Neural Network libraries (NVIDIA
cuDNN) are installed on the system for the corresponding hardware. The exact library versions are
listed below:

* Intel MKL/2019.5.2.8.1
» cuBLAS/10.1.105
* cuDNN/7.5.1.10-CUDA-10.1.105

4.1.1 OpenCL Heterogeneous Programming Framework

As reported before, specific interest to use the FPGA accelerators of the Data Analytics Module was
expressed by the WP1 partners Astron and CERN. Both did express a clear preference of using
the standardised OpenCL programming framework for their work. As reported in Deliverable D1.5,
partner Astron had ported part of their applications suite to the Stratix 10 FPGAs, and they were
supported closely by Intel FPGA experts to devise a new OpenCL implementation which was adapted
to the specific FPGA architecture.

DEEP-EST - 754304 27 31.3.2021

D6.4 Programming environment support report

In this process, the installed versions of the Intel FPGA SW stack were upgraded several times to
make improvements to the OpenCL compiler, the FPGA backend and the general FPGA development
framework available to all users. The officially installed version of these tools is now 2.0.1.

Initially planned work to support the inference of TensorFlow-produced models on the FPGAs by way
of the Open Neural Network Exchange (ONNX) model format were not pursued, since the TensorFlow
framework development switched to a new backend API and implementation with version 2.x which
does not rely anymore on a static computation graph to capture a trained model and is therefore not
compatible with ONNX.

4.1.2 oneAPI Programming Model

Intel publicly announced the new oneAPI programming model at the SC19 conference in Denver.
oneAPIl is a unified standards-based programming model [32], with the main objectives of simplifying
application programming for heterogeneous platforms and achieving portability across multiple CPU
and accelerator architectures. Functional portability is the first goal, yet the initiative aims higher and
wants to achieve a degree of performance portability, too.

To this end, oneAPI has extended the SYCL' programming model into the Data Parallel C++ (DPC++)
language, which is fully embedded into C++ V14 and later, and enables developers to code computa-
tional kernels suitable for execution on accelerators using C++ templates, to specify the required data
transfers, and to manage offload to multiple accelerators. Care has been taken to enable an intelligent
middleware to dynamically optimise DPC++ applications and to orchestrate kernel offloads, execution
and data transfers in an efficient way. oneAPI is an open industry consortium, and implementations
are becoming available for a variety of Intel and non-Intel platforms, including NVIDIA’s GPGPUs.

The central place to learn about oneAPl is https://www.oneapi . com, with the specifications
available at https://spec.oneapi.com/versions/latest/index.html.

Intel itself has developed a highly optimized implementation of DPC++, which targets Intel’s line of
CPUs, FPGAs and GPGPUs. This is contained in the latest releases of Intel's SW development
tools, now refactored as “oneAPI toolkits” free of charge at https://software.intel.com/
content/www/us/en/develop/tools/oneapi/all-toolkits.html. These comprise
the full functionality of the compilers, performance analysis and optimisation tools, mathematical and
communication libraries and debugger, plus domain-specific extensions.

Intel and JSC collaborated closely in evaluating the applicability of DPC++ and the use of the Intel
toolkits for HPC codes; since early releases did require a different base OS installation from the
one available on the DEEP-EST prototype, this work was first done on small systems outside of the
DEEP-EST prototype, and then on a specially configured node of the ESB. Experiments included the
use of the Intel compilers for a combination of an Intel CPU and its integrated GPGPU, and the use of
a third-party DPC++ compilation system to target the Intel CPU plus NVIDIA Tesla V100 card on the
one ESB node. Codes used included DPC++ examples, and more interestingly, CUDA codes which
were translated to DPC++ via an Intel-supplied, third-party code compatibility tool. These experiments
did establish the viability of DPC++ and the tools used regarding code functionality; performance
results on Intel CPUs were (as expected) good, and the integrated graphics units targeted were

'A C++ single-source heterogeneous programming model for acceleration offload developed as part of the Khronos
standardisation effort, see https://www.khronos.org/sycl

DEEP-EST - 754304 28 31.3.2021

https://www.oneapi.com
https://spec.oneapi.com/versions/latest/index.html
https://software.intel.com/content/www/us/en/develop/tools/oneapi/all-toolkits.html
https://software.intel.com/content/www/us/en/develop/tools/oneapi/all-toolkits.html
https://www.khronos.org/sycl

D6.4 Programming environment support report

driven to the limits of their performance potential. Performance of codes on NVIDIA GPGPUs is still
under analysis.

Testing the oneAPI functionality included the toolkit examples (such as DGEMM, SAXPY, and random
number generators), writing & debugging Lamdba functions to be offloaded, handling of buffers in
local and in unified shared memory, and using device selectors. On the NVIDIA V100 GPGPUs,
matrix multiplication codes were tested, and work is continuing to evaluate calling of NVIDIA cuBLAS
routines and using the new CUDA backend for MKL. An Intel engineer not funded by the project has
worked on a oneAPI port of the GROMACS code, and JUELICH has contributed a simple n-body
simulation example useful to test different schemes for handling buffers and leveraging unified shared
memory.

Problems persist with installing the FPGA oneAPI tools, due to the fact that CentOS 7 is not supported
at this time. Intel will continue to work with JUELICH to address this problem.

As reported in D1.5, partner CERN also performed experiments with oneAPI, porting a CUDA
implementation of an electromagnetic calorimeter reconstruction code (which was produced earlier in
the project) to oneAPI. Three steps were involved: first, the DPC++ code compatibility tool created a
rough first DPC++ version; in a second step, the issues found by the tool during conversion were
addressed manually, and in the final step, DPC++ compiler/linker errors were corrected. For the test
code, the second step was very easy — it was, on the other hand, noted that with the current oneAPI
tool versions, code which uses the NVIDIA tensor cores needs to be re-implemented. The third step
involved more work, since the primitives used by the Eigen library had to be modified to fit in with the
restrictions of kernel code in DPC++. This could be addressed in the future by libraries like Eigen
becoming available in oneAPl-compatible forms.

Due to time constraints, performance could only be checked against a pure C++ code on CPU
nodes—here, the rough oneAPI implementation did show very similar performance.

4.1.3 Persistent Memory Toolkit

The Data Analytics Module is composed of 16 nodes with 384 GB RAM plus 3 TB of Intel Optane
Persistent Memory. Compared to DRAM, Intel Optane Persistent Memory has higher latency and
lower bandwidth , yet offers much higher affordable capacities than DRAM and data persistence. It
can be configured in two principal modes: Memory Mode and App Direct Mode.

In Memory Mode, no changes to the application are required: the installed DRAM acts as a memory
cache and the Intel Optane Persistent Memory transparently offers its full memory capacity to the OS
and to applications. However, memory contents is volatile. In DEEP-EST, the WP1 partner Astron
has made use of this mode for applications running on the CPU and the FPGA of the DAM nodes.
No specific changes or adaptations were required to the base OS of the DAM or other SW packages
— Memory Mode is enabled via UEFI/BIOS settings, and requires a node reboot.

In App Direct Mode, DRAM and persistent memory are mapped onto separate memory address
spaces (seen as memory nodes by Linux) , and applications have to be modified in order to exploit
the different characteristics of the two memory technologies. Access to the persistent memory occurs
through regular load and store operations. Intel has released the Open Source Persistent Memory
Development Kit (PMDK, see [33]).

DEEP-EST - 754304 29 31.3.2021

D6.4 Programming environment support report

A special use case of App Direct mode is to map a file system onto a non-volatile memory partition;
for this, the fs-dax layer provided by PMDK enables file system access while avoiding the need to go
through a block device chain. For I/0O-heavy applications, this usage mode can provide significant
speed-ups, as for instance reported by the NextGenlO project. With WP6 partner ITWM, the BeeOND
parallel file system was adapted to use the persistent memory as a storage target, enabling a job
running on n DAM nodes to use a transient BeeGFS file system placed onto the n x 3 TB of persistent
memory at bandwidths significantly exceeding those achievable for the NVMe SSDs.

App direct mode and PMDK are in principle supported by the base OS of the DAM (CentOS 7), which
runs the 3.x Linux kernel. Newer OS versions (such as CentOS 8 with kernel 4.x) provide significantly
better performance, and experiments were run with a back-ported 4.19 kernel to establish whether
the DAM nodes would be fully functional with a combination of CentOS 7 and such kernel. Since the
results were positive, such a combination was used for BeeOND bechmarking.

DEEP-EST - 754304 30 31.3.2021

D6.4 Programming environment support report

5 /0O, file system, and storage

5.1 BeeGFS Storage Plugin Infrastructure

The prototype BeeGFS Storage Plugin Infrastructure allows BeeGFS to use a non-POSIX backend to
store the user data into it, allowing new technologies like NVDIMMs, DAOS, CORTX or even Amazon
S3 buckets to be used with BeeGFS. The concept of the BeeGFS Storage Plugin Infrastructure was
already presented in D6.3, as were the two example storage backends: The heap plugin stores all
data in system RAM and provides a lightweight alternative to tmpfs for volatile storage. While the
pmem is a prototype for BeeGFS chunk data storage on non-volatile memory NVDIMMSs using Intel’s
Persistent Memory Development Kit, allowing for fast storage which survives system crashes and
restarts.

Having NVDIMM devices installed, the BeeGFS Storage prototype with the pmem prototype plugin
was deployed on several DAM nodes and successfully tested. It is now also available for testing to
the regular DEEP-EST user through the BeeOND facility (see next section). However, as with any
developing technology, the NVDIMM support of the prototype pmem plugin still can be optimised
further. Also recent changes in the upstream BeeGFS code lead to the needed for further adaptations
of the plugin infrastructure to archive better performance. As there is also some interest from business
costumers as well, an integration into the official BeeGFS repository for the next major release, and
the needed steps therein are currently discussed.

5.2 BeeOND Integration

BeeOND (BeeGFS on demand) is a framework that allows creating a temporary parallel file system
on an arbitrary number of hosts. Setup and teardown can happen in a matter of seconds and it can
be integrate into any resource manager / job scheduler. This makes it ideal as a per job scratch file
system or cache layer.

However, the widespread successful hacking of HPC Systems in 2020, lead the Jllich Supercomputer
Center to change its security policy, which also effects the integration of the BeeOND framework:
Normally BeeOND is run with root privileges on one of the participating nodes, starting the needed
services on the other nodes using root ssh connections. The need for having elevated privileges
stems from the fact that the actual mounting of the BeeOND filesystem needs root privileges. This
behaviour is now forbidden, as is the usage of sudo for the same task, and a new approach was found
to get BeeOND working: It was decided to use SLURMSs prologue/epilogue facility instead, which can
run a script on job start and end on each node with the needed privileges. This unfortunately meant
a complete rewrite of BeeOND: instead of having one central process which coordinates the start-up
and shutdown of the filesystem, we now have a collection of independent processes which have to
coordinate their work with one another. For this, each agent determines the full configuration of the
filesystem and starts/stops the services needed on the local node. Furthermore, using the included
BeeGFS facilities, each of the agents oversees the startup/shutdown of the BeeOND filesystem as a
whole and is therefore able to detect remote failures, as well. This allows each instance of BeeOND
to bring down the filesystem in a consistent way in case of a failure in another node.

DEEP-EST - 754304 31 31.3.2021

D6.4 Programming environment support report

For this special version of BeeOND, a SLURM SPANK plugin was created which provides a BeeOND
option to the cluster users and which pass its content to the BeeOND script on the individual nodes.
Compared to the previous implementation to other job schedulers this allows the user to also pass
options to the BeeOND script. It allows for finer control of the resulting temporal filesystem, instead of
the user relying on that the default options fits her or his needs. Furthermore this makes integrating
the BeeGFS Storage Plugin Infrastructure easy, as it is now an additional option to the BeeOND
parameter. Users who want to test this feature therefore only need to change one line in their job
description.

This new BeeOND version was successfully deployed earlier this year and is now in active use.
Furthermore, this development has already gained interests among commercial BeeOND users, as
similar security restrictions are imposed on other HPC clusters too. Also the better integration into
SLURM is of interest by some commercial clients, too.

5.3 BeeGFS Monitoring

The target of the BeeGFS Monitoring server is to stream real-time statistical data of a BeeGFS
filesystem into either a InfluxDB or a Apache Cassandra Database, be it for further analysis and/or
graphical presentation using products such as Grafana. This monitoring service is part of the
BeeGFS filesystem since version 7.0 and its inner working was already presented in D6.3. Since
then the software has undergone only minor changes to work with DCDB, the monitoring framework
implemented by BAAW-LRZ, as describe in D5.3: Instead of the original plan to directly write into the
Apache Cassandra Database, it was decided to use the https interface of DCDB, which can mimic the
InfluxDB protocol. This has the advantage that we now have one defined interface between the two
products, saving both projects to adapt its product whenever the other changes its database structure.
Furthermore as the InfluxDB protocol is already supported by the BeeGFS monitoring, only minor
adaptations to it were needed. The greatest addition was the support for encrypted connections, a
feature which will be shipped in the upcoming v.7.2.1 release of BeeGFS.

The BeeGFS Monitoring itself was installed on the DEPP-EST BeeGFS installation and feeds its data
to the DEEP-EST DCDB instance. Their status can now be monitored using Grafana Panels like the
ones shown in Figure 5.

The software has been included in BeeGFS since the release of version 7.0, and is therefore publicly
available.

5.4 SIONIib

Since the last report in D6.3, no optimisations were performed on the features added to SIONIib,
because the storage hardware in the prototype system was deemed insufficient for the purpose of
performing I/O performance measurements and the installation of an improved flash-based storage
system is still outstanding.

The installation of SIONIib on the prototype system was already completed in D6.3 and since no new
versions were released in the mean time, there is no installation activity to report on.

DEEP-EST - 754304 32 31.3.2021

D6.4 Programming environment support report

Figure 5: Grafana Panels showing different properties of the SSSM BeeGFS installation.

Recently, we identified a bug in SIONfwd which made the I/O forwarding server, sionfwd-server,
abort when receiving a pread or pwrite message with I/O size zero. A fix for the bug is included
in SIONfwd version 1.0.1." This bug is not triggered by the stable version of SIONIlib used in the
DEEP-EST project, 1.7.6, and thus the new version of SIONfwd was not installed on the prototype
system.

We received user feedback from the xPic developers early on in the project (July 2018), when a
refactoring of C pre-processor logic in the public header files of SIONIib 1.7.2 caused a compilation
error for xPic. The xPic developers were given instructions on how to correctly use the sionconfig
utility program to help with compilation. Additionally, a new version of SIONlIib, 1.7.3-rc.2, which
restored the old pre-processor logic was prepared and installed on the DEEP-EST prototype system
for the xPic developers.

"https://gitlab.version.fz-juelich.de/SIONlib/SIONfwd/~/releases/v1.0.1

DEEP-EST - 754304 33 31.3.2021

https://gitlab.version.fz-juelich.de/SIONlib/SIONfwd/-/releases/v1.0.1

D6.4 Programming environment support report

6 Resiliency

In deliverables D6.2 and D6.3, we presented the advanced features of FTI and the OpenCHK
checkpoint/restart model based on pragmas. This task, as originally planed, completed the work
described in the project proposal, so there are no further development to report.

DEEP-EST - 754304 34 31.3.2021

D6.4 Programming environment support report

7 Summary

This document describes the programming environment developed to efficiently exploit the MSA
architecture. The programming environment covers the most relevant parts of the software stack
required to run on a supercomputer and it includes these components:

+ ParaStation MPI communication library (Section 2) to leverage distributed memory systems

* OmpSs-2 programming model (Section 3) to exploit many-core processors, deep memory
hierarchies and accelerators

Some of the most popular frameworks and libraries used for data analytics and machine
learning (Section 4)

SIONIib and BeeGFS filesystem (Section 5) to exploit the storage subsystem

FTI/SCR multi-level checkpoint/restart libraries (Section 6) to enhance the application resiliency
to system faults

In the following paragraphs we summarize the main developments completed for each of these
software components.

We have enhanced ParaStation MPI with modularity awareness at various levels of the software stack.
In doing so, recent developments have focused in particular on the integration of libGCE/GCE as
well as libNAM/NAM with their respective features in ParaStation MPI. Therefore, on the one hand,
ParaStation MPI has been extended by a corresponding infrastructure to integrate the functions of
libGCE and to support the GCE as an accelerator for MPI collectives also in MSA-aware sessions.
On the other hand, for supporting the NAM, a corresponding wrapper layer has been implemented for
ParaStation MPI towards libNAM and its related management API. This wrapper layer, called PSNAM,
establishes the actual linkage between the MPI RMA interface and the access to persistent memory
regions such as those of the NAM. In addituion, an integration with the resource manager has been
implemented so that PSNAM can also handle pre-allocated NAM regions, e. g., those provided by the
NAM burst buffer plugin as developed in Task 5.5 for Slurm.

The OmpSs-2 programming model has been enhanced to improve programmability and exploit
specific hardware features of each module. We have extended OmpSs-2’s runtime system with a new
scalable scheduler and a wait-free dependency system to mitigate tasks management overheads.
The runtime has also been extended to dynamically apply both dynamic voltage and frequency
scaling (DVFS) and dynamic concurrency throttling (DCT) to exploit hardware resources efficiently,
by saving energy while maintaining performance. We have extended the Task-Aware MPI (TAMPI
library) to support one-sided operations inside tasks, which can be used to exchange data between
MPI ranks but also to access the NAM. To address the new ESB design we extended OmpSs-2 with
support for CUDA C kernels. Now, we have extended the runtime to also support optimized CUDA
kernels provided by libraries such as cuBLAS, cuFFT or cuSolver. Moreover, OmpSs-2 has also been
extended to support OpenACC as an alternative to generate kernels by annotating sequential code
with pragmas. The runtime system has also been enhanced with a directory/cache to transparently
manage data transfers between host and devices.

DEEP-EST - 754304 35 31.3.2021

D6.4 Programming environment support report

We have identified the data analytics and machine learning frameworks and libraries that are relevant
for our applications. These frameworks and libraries have been installed, supported and regularly
updated on the DEEP-EST prototype.

For the integration of BeeOND into the DEEP-EST cluster, we had to reprogram it, as the previous
version was in conflict with the new security guidelines imposed by the Jllich Supercomputer Center.
The opportunity was taken, to also create a solution that fully integrates BeeOND into the SLURM
job manager. This now gives the users the possibility to fine tune their temporary parallel file system
to their needs. With this new BeeOND version the usage of the BeeGFS PMEM storage plugin
prototype is now also possible by only changing one line in the job description. Concerning the
BeeGFS monitoring, smaller adaptations where needed, but it is now deployed and is feeding its
statistic into DEEP-EST DCDB instance, where users can now inspect current and past performance
of the DEEP-EST BeeGFS filesystem.

With all these new software developements, installed on the DEEP-EST prototype, a comprehensive,
production ready programming environment is available for this and future MSA systems.

DEEP-EST - 754304 36 31.3.2021

D6.4

Programming environment support report

List of Acronyms and Abbreviations

A

API

B

BeeGFS

BeeOND
BN

BoP
BSC

C

Cassandra
CERN

CM

CN
CPU

DAM

DAM-EXT
DEEP
DEEP-ER
DEEP/-ER
DEEP-EST

DEEP-EST - 754304

Application Programming Interface

The Fraunhofer Parallel Cluster File System (previously acronym
FhGFS). A high-performance parallel file system

BeeGFS-on-demand, parallel storage based on BeeGFS
Booster Node (functional entity)

Board of Partners for the DEEP EST project

Barcelona Supercomputing Centre, Spain

The Apache Cassandra key-value store

European Organisation for Nuclear Research / Organisation Eu-
ropéenne pour la Recherche Nucléaire, International organisation

Cluster Module: with its Cluster Nodes (CN) containing high-end
general-purpose processors and a relatively large amount of mem-
ory per core

Cluster Node (functional entity)
Central Processing Unit

Data Analytics Module: with nodes (DN) based on general-purpose
processors, a huge amount of (non-volatile) memory per core, and
support for the specific requirements of data-intensive applications

Part of the Data Analytics Module featuring Extoll connectivity
Dynamical Exascale Entry Platform (project FP7-1CT-287530)
DEEP - Extended Reach (project FP7-1CT-610476)

Term used to refer jointly to the DEEP and DEEP-ER projects
DEEP - Extreme Scale Technologies

37 31.3.2021

D6.4

Programming environment support report

DN
DNN

EC
ESB

EU
Exascale

EXTOLL

F

FHG-ITWM

FP7
FPGA

FTI

G

GCE
GPU

H

H2020
HPC

HPDBSCAN

HW

DEEP-EST - 754304

Nodes of the DAM
Deep neural network

European Commission

Extreme Scale Booster: with highly energy-efficient many-core proces-
sors as Booster Nodes (BN), but a reduced amount of memory per
core at high bandwidth

European Union

Computer systems or Applications, which are able to run with a perfor-
mance above 10'® Floating point operations per second

High speed interconnect technology for HPC developed by UHEI

Fraunhofer Gesellschaft zur Foerderung der Angewandten Forschungs
e.V., Germany

European Commission 7th Framework Programme

Field-Programmable Gate Array, Integrated circuit to be configured by
the customer or designer after manufacturing

Fault Tolerant Interface, a checkpoint/restart library

Global Collective Engine, a computing device for collective operations
Graphics Processing Unit

Horizon 2020

High Performance Computing

A clustering code used by Uol in the field of Earth Science
Hardware

38 31.3.2021

D6.4 Programming environment support report
Intel Intel Germany GmbH, Feldkirchen, Germany
/0 Input/Output. May describe the respective logical function of a com-
puter system or a certain physical instantiation
ISO International Organisation for Standardisation

J

JLESC
JUBE
JUELICH

K

KULeuven

L

MPI
MPICH

MSA

NAM
NEST

NMBU

DEEP-EST - 754304

Joint Laboratory for Extreme Scale Computing
Julich Benchmarking Environment

Forschungszentrum Jalich GmbH, Jilich, Germany

Katholieke Universiteit Leuven, Belgium

Message Passing Interface, API specification typically used in parallel
programs that allows processes to communicate with one another by
sending and receiving messages

MPI implementation maintained by Argonne National Laboratory
Modular Supercomputer Architecture

Network Attached Memory

Widely-used, publically available simulation software for spiking neural
network models developed by NMBU

Norwegian University of Life Sciences, Norway

39 31.3.2021

D6.4 Programming environment support report

OmpSs BSC’s Superscalar (Ss) for OpenMP

OpenCL Open Computing Language, framework for writing programs that exe-
cute across heterogeneous platforms

OpenMP Open Multi-Processing, Application programming interface that support
multi-platform shared memory multiprocessing

P

ParaStation Software for cluster management and control developed by JUELICH
and its linked third party ParTec

ParTec ParTec Cluster Competence Center GmbH, Munich, Germany. Linked
third Party of JUELICH in DEEP EST

PCle Peripheral Component Interconnect Express (a high-speed serial com-
puter expansion bus standard)

piSVM Parallel classification algorithm

PMT Project Management Team of the DEEP-EST project

Q

R

RDMA Remote Direct Memory Access / Remote DMA-based Memory Access
RMA Remote Memory Access

S

SCR Scalable Checkpoint/Restart. A library from LLNL

SDvV Software Development Vehicle: HW systems to develop software in the
time frame where the DEEP-EST prototype is not yet available

SIONIib Parallel I/O library developed by Forschungszentrum Jiilich

DEEP-EST - 754304 40 31.3.2021

D6.4 Programming environment support report

T

TensorFlow Open-source software library for dataflow programming

U

UHEI Ruprecht-Karls-Universitaet Heidelberg, Germany
Uol Haskdli islands University of Iceland, Iceland

DEEP-EST - 754304 41 31.3.2021

D6.4 Programming environment support report

Bibliography

[1] V. Beltran et al.: DEEP-EST Deliverable 6.1: Design and specification of programming environ-
ment, March 2018

[2] V. Beltran et al.: DEEP-EST Deliverable 6.2: Prototype Programming Environment Implementa-
tion, March 2019

[3] V. Beltran et al.: DEEP-EST Deliverable 6.3: Complete Programming Environment Implementa-
tion, December 2019

[4] The Message Passing Interface Forum: MPI: A Message-Passing Interface Standard — Version
3.1, June 2015

[5] Kielmann, Thilo and Hofman, Rutger and Bal, Henri E. and Plaat, Aske and Bhoedjang, Raoul:
MagPle: MPI’s Collective Communication QOperations for Clustered Wide Area Systems, in
Proceedings of the seventh ACM SIGPLAN symposium on Principles and Practice of Parallel
Programming, vol. 34, num. 8, pp. 131-140, 1999

[6] Simon Pickartz and Carsten Clauss and Stefan Lankes and Antonello Monti: Enabling Hierarchy-
aware MPI Collectives in Dynamically Changing Topologies, in Proceedings of EuroMPI/USA’17,
Chicago, September 2017, pp. 25-28,
https://doi.org/10.1145/3127024.3127031

[7]1 George Bosilca, Thomas Herault, Ala Rezmerita, and Jack Dongarra: On Scalability for MPI
Runtime Systems, in Proceedings of the 13th IEEE International Conference on Cluster Com-
puting (CLUSTER), IEEE Computer Society, pages 187—195, September 2011,
http://ieeexplore.ieee.org/document/6061054/

[8] TensorFlow: open-source software library for dataflow programming
https://www.tensorflow.org/

[9] J. M. Perez, V. Beltran, J. Labarta and E. Ayguadé, "Improving the Integration of Task Nesting
and Dependencies in OpenMP," 2017 IEEE International Parallel and Distributed Processing
Symposium (IPDPS), Orlando, FL, 2017, pp. 809-818.

[10] M. Marorias, K. Sala, S. Mateo, E. Ayguadé and V. Beltran. "Worksharing Tasks, an Efficient
Way to Exploit Irregular and Fine-Grained Loop Parallelism.” IEEE 26th International Conference
on High Performance Computing (HiPC 2019), Hyderabad, India.

[11] M. Maronas, X. Teruel, J.M. Bull, E. Ayguadé, V. Beltran. "Evaluating Worksharing Tasks on
Distributed Environments." CLUSTER 2020: 69-80

[12] K. Sala, A. Rico, V. Beltran. "Towards Data-Flow Parallelization for Adaptive Mesh Refinement
Applications." CLUSTER 2020: 314-325

[13] D. Alvarez, K. Sala, M. Marofas, A. Roca and V. Beltran. "Advanced Synchronization Techniques
for Task-Based Runtime Systems." 26th ACM SIGPLAN Annual Symposium on Principles and
Practice of Parallel Programming (PPoPP’21)

[14] "Paper submitted to a conference with double-blind review process"

[15] R. Cano. Communication in Task-based Runtimes for Heterogeneous Systems. Master Thesis.
https://upcommons.upc.edu/handle/2117/334936

DEEP-EST - 754304 42 31.3.2021

https://doi.org/10.1145/3127024.3127031
http://ieeexplore.ieee.org/document/6061054/
https://www.tensorflow.org/
https://upcommons.upc.edu/handle/2117/334936

D6.4 Programming environment support report

[16] O. R. Korakitis. Towards supporting Composability of Directive-based Programming Models
for Heterogeneous Computing. Master Thesis. https://upcommons.upc.edu/handle/
2117/335903

[17] Kevin Sala, Jorge Bellon, Pau Farré, Xavier Teruel, Josep M. Perez, Antonio J. Pena, Daniel
Holmes, VicenBeltran, and Jesus Labarta. 2018. Improving the Interoperability between MPI
and Task-Based Programming Models. In Proceedings of the 25th European MPI Users’ Group
Meeting (EuroMPI'18). ACM, New York, NY, USA, Article 6, 11 pages.

[18] Kevin Sala, Xavier Teruel, Josep M. Pérez, Antonio J. Pefa, Viceng Beltran, and Jesus Labarta:
Integrating Blocking and Non-Blocking MPI Primitives with Task-Based Programming Models,
CoRR, 2019.

[19] Keras: a high-level neural networks API, written in Python
https://keras.io/

[20] BigDL: Distributed Deep Learning on Apache Spark
https://github.com/intel-analytics/BigDL

[21] Apache Spark: a fast and general engine for large-scale data processing
https://spark.apache.org/

[22] OmpSs-2: The OmpSs-2 specification
https://pm.bsc.es/ompss—-2-docs/spec/

[23] Best Practice Guide for Writing MP1+OmpSs Interoperable Programs
https://www.intertwine-project.eu/api-combinations

[24] F. Sainz and J. Bellon and V. Beltran and J. Labarta: Collective Offload for Heterogeneous
Clusters, in Proceedings of the 22nd International Conference on High Performance Computing
(HiPC), IEEE Computer Society, pages 376-385, December 2015
http://ieeexplore.ieee.org/document/7397653/

[25] Optimize performance of Python with integrated libraries and parallelism techniques
https://software.intel.com/en-us/distribution-for-python

[26] Paszke, Adam et al. “Automatic differentiation in PyTorch.” (2017).

[27] Fabian Pedregosa, Gaél Varoquaux, Alexandre Gramfort, Vincent Michel, Bertrand Thirion,
Olivier Grisel, Mathieu Blondel, Peter Prettenhofer, Ron Weiss, Vincent Dubourg, Jake Van-
derplas, Alexandre Passos, David Cournapeau, Matthieu Brucher, Matthieu Perrot, Edouard
Duchesnay, Scikit-learn: Machine Learning in Python, The Journal of Machine Learning Re-
search, 12, p.2825-2830, 2/1/2011

[28] Sergeev, Alexander and Mike Del Balso. “Horovod: fast and easy distributed deep
learning in TensorFlow.” CoRR abs/1802.05799 (2018): n. pag.

[29] Joeri R. Hermans. Distributed Keras: Distributed Deep Learning with Apache Spark and Keras,
CERN IT-DB https://github.com/cerndb/dist-keras

[30] Alvarez, Damian and O’Cais, Alan and Geimer, Markus and Hoste, Kenneth, Proceedings of
the Third International Workshop on HPC User Support Tools (HUST-16), Scientific software
management in real life: deployment of easybuild on a large scale system, 2016

DEEP-EST - 754304 43 31.3.2021

https://upcommons.upc.edu/handle/2117/335903
https://upcommons.upc.edu/handle/2117/335903
https://keras.io/
https://github.com/intel-analytics/BigDL
https://spark.apache.org/
https://pm.bsc.es/ompss-2-docs/spec/
https://www.intertwine-project.eu/api-combinations
http://ieeexplore.ieee.org/document/7397653/
https://software.intel.com/en-us/distribution-for-python
https://github.com/cerndb/dist-keras

D6.4 Programming environment support report

[31] A collection of easyconfig files that describe which software to build using which build options
with EasyBuild. http://easybuilders.github.io/easybuild/

[32] Intel oneAPI Toolkits(Beta): A Unified, Standards-Based Programming Model across multiple
architectures. https://software.intel.com/en-us/oneapi

[33] PMDK: The Persistent Memory Development Kit (PMDK) https://pmem. io/pmdk/

[34] OpenCL: The open standard for parallel programming of heterogeneous systems https:
//www.khronos.org/opencl/

[35] K. Keller and Leonardo Bautista Gomez Application-Level Differential Checkpointing for HPC
Applications with Dynamic Datasets 2019 19th IEEE/ACM International Symposium on Clus-
ter, Cloud and Grid Computing (CCGRID) https://doi.org/10.1109/CCGRID.2019.
00015

DEEP-EST - 754304 44 31.3.2021

http://easybuilders.github.io/easybuild/
https://software.intel.com/en-us/oneapi
https://pmem.io/pmdk/
https://www.khronos.org/opencl/
https://www.khronos.org/opencl/
https://doi.org/10.1109/CCGRID.2019.00015
https://doi.org/10.1109/CCGRID.2019.00015

	Project and Deliverable Information Sheet
	Document Control Sheet
	Document Status Sheet
	Table of Contents
	List of Figures
	List of Tables
	Executive Summary
	Introduction
	ParaStation MPI
	Modularity awareness
	Integration of libGCE
	MPI support for the NAM
	Project resources and references

	The OmpSs-2 Programming Model
	Runtime optimizations
	Energy-aware runtime system
	Support for Accelerators
	TAMPI extensions to support the NAM
	Benchmarks and mini-Apps
	Using OmpSs-2 on the DEEP-EST prototype

	Data Analytics Programming Model
	Installed Frameworks

	I/O, file system, and storage
	BeeGFS Storage Plugin Infrastructure
	BeeOND Integration
	BeeGFS Monitoring
	SIONlib

	Resiliency
	Summary
	List of Acronyms and Abbreviations
	Bibliography

