

SEVENTH FRAMEWORK PROGRAMME

FP7-ICT-2013-10

DEEP-ER

DEEP Extended Reach

Grant Agreement Number: 610476

D4.4

I/O software packages

Approved

Version: 2.0

Author(s): K. Thust (JUELICH)

Contributor(s): G. Congiu (Seagate), F. Kautz (FHG-ITWM)

Date: 04.05.2017

D4.4 I/O software packages

1

DEEP-ER - 610476 04.05.2017

Project and Deliverable Information Sheet

DEEP-ER Project Project Ref. ˉ: 610476

Project Title: DEEP Extended Reach

Project Web Site: http://www.deep-er.eu

Deliverable ID: D4.4

Deliverable Nature: Report

Deliverable Level:

PU *

Contractual Date of Delivery:

30 / June / 2016

Actual Date of Delivery:

30 / June / 2016

EC Project Officer: Panagiotis Tsarchopoulos

* - The dissemination level are indicated as follows: PU ï Public, PP ï Restricted to other participants (including

the Commission Services), RE ï Restricted to a group specified by the consortium (including the Commission

Services). CO ï Confidential, only for members of the consortium (including the Commission Services).

Document Control Sheet

Document

Title: I/O software packages

ID: D4.4

Version: 2.0 Status: Approved

Available at: http://www.deep-er.eu

Software Tool: Microsoft Word

File(s): DEEP-ER_D4.4_IO_software_packages_v2.0-ECapproved

Authorship

Written by: K. Thust (JUELICH)

Contributors: G. Congiu (Seagate), F. Kautz (FHG-

ITWM)

Reviewed by: G. Lapenta (KULeuven), E. Suarez

(JUELICH)

Approved by: BoP/PMT

http://www.deep-er.eu/
http://www.deep-er.eu/

D4.4 I/O software packages

2

DEEP-ER - 610476 04.05.2017

Document Status Sheet

Version Date Status Comments

1.0 30/June/2016 Final EC submission

2.0 04/May/2017 Approved EC approved

D4.4 I/O software packages

3

DEEP-ER - 610476 04.05.2017

Document Keywords

Keywords: DEEP-ER, HPC, Exascale, I/O Architecture, Benchmarking

Copyright notice:

â 2013-2017 DEEP-ER Consortium Partners. All rights reserved. This document is a project

document of the DEEP-ER project. All contents are reserved by default and may not be

disclosed to third parties without the written consent of the DEEP-ER partners, except as

mandated by the European Commission contract 610476 for reviewing and dissemination

purposes.

All trademarks and other rights on third party products mentioned in this document are

acknowledged as own by the respective holders.

D4.4 I/O software packages

4

DEEP-ER - 610476 04.05.2017

Table of Contents

Project and Deliverable Information Sheet .. 1

Document Control Sheet ... 1

Document Status Sheet ... 2

Document Keywords .. 3

Table of Contents ... 4

List of Figures ... 5

Executive Summary ... 6

1 Introduction ... 7

2 BeeGFS .. 8

2.1 Intermediate layer .. 8

2.2 I/O API extension ... 9

2.3 BeeGFS on the DEEP Booster nodes .. 12

2.4 Resiliency and reliability .. 12

2.5 Compression .. 13

2.6 Data placement .. 13

2.7 Monitoring and statistics of BeeGFS .. 13

2.8 Open Source .. 16

2.9 Extoll Support .. 16

2.10 BeeGFS Summary and Conclusions ... 16

3 SIONlib ... 17

3.1 Overview ... 17

3.2 Key-value mode ... 18

3.3 Redesign and restructuring ... 19

3.4 Buddy checkpointing .. 21

3.5 Open Source .. 26

3.6 SIONlib Summary and Conclusions .. 26

4 E10 .. 28

4.1 Exascale10 Contributions .. 28

4.2 Exascale10 Hints Extensions for MPI-IO ... 29

4.3 Exascale10 Architecture ... 29

4.4 Exascale10 Integration.. 36

4.5 Source code licensing and release ... 41

4.6 E10 Summary and Conclusions ... 41

5 Summary and next steps .. 42

References .. 43

D4.4 I/O software packages

5

DEEP-ER - 610476 04.05.2017

List of Figures

Figure 2.1-1: Cache architecture .. 8

Figure 2.2-1: Asynchronous API architecture ... 10

Figure 2.2-2: Code example of the asynchronous cache API. ... 12

Figure 2.4-1: File Striping with BuddyMirrored and unmirrored files 13

Figure 2.7-1: Output of beegfs-ctl which contains storage statistics of users 14

Figure 2.7-2: Output of beegfs-ctl which contains metadata statistics of users 14

Figure 2.7-3: Output of beegfs-ctl which contains storage statistics of beegfs-clients 14

Figure 2.7-4: Output of beegfs-ctl which contains metadata statistics of beegfs-clients 14

Figure 2.7-5: Client metadata and storage statistics in the admon GUI 15

Figure 3.3-1: Original software layout of SIONlib ... 20

Figure 3.3-2: Revised software layout of SIONlib .. 20

Figure 3.4-1: Normal restart from local data (left) and restart from local data using buddy
checkpointing after node failure (right). .. 21

Figure 3.4-2: Buddy checkpointing integration ... 22

Figure 3.4-3: Communication groups ... 23

Figure 3.4-4: Comparison of read and write behaviour of SCR (left) and SIONlib (right)....... 24

Figure 3.4-5: Basic usage of buddy checkpointing in SIONlib ... 26

Figure 4.1-1: Exascale10 software stack ... 28

Figure 4.3-1: Synchronisation request object and related APIs ... 32

Figure 4.3-2: Synchronisation thread and related APIs .. 32

Figure 4.3-3: For every write a new request is created and submitted to the synchronisation
pool ... 34

Figure 4.3-4: When the file is flushed all the pending requests are forced to the global file
system and checked for completion ... 35

Figure 4.3-5: When the file is closed the file is synchronised with the cache and the cache file
is closed ... 36

Figure 4.4-1: Example of standard HPC application workflow (above) and modified E10
workflow (below). .. 37

Figure 4.4-2: Example of C code explicitly using E10 functionalities. 38

Figure 4.4-3: Example of MPIWRAP configuration file ... 39

Figure 4.4-4: Exascale10 software stack including MPIWRAP on top of MPI-IO 40

Figure 4.4-5: Example of bash script using MPIWRAP .. 40

file:///C:/Users/suarez/Documents/DEEP_ECL/DEEP_Coordinator/DEEP-ER/DR-Reports_and_Deliverables/DR_Deliverables/D4.4/DEEP-ER_D4.4_IO_software_packages_v2.0-ECapproved.docx%23_Toc494827682

D4.4 I/O software packages

6

DEEP-ER - 610476 04.05.2017

Executive Summary

This deliverable describes the three I/O pages that are used in the DEEP-ER project. These

are the bridging components between the hardware (WP3) in one side and resiliency (WP5)

and applications (WP6) in the other. A description of the BeeGFS filesystem is presented in

this document, followed by a detailed presentation of the middleware packages SIONlib and

E10. The focus of the latter two packages, that lay on top of BeeGFS, is the optimisation of

I/O for task-local and collective I/O, respectively.

The different sections of this document give a short introduction about the basic features of

the software packages and describe the developments that have been completed so far in

the course of the DEEP-ER project.

D4.4 I/O software packages

7

DEEP-ER - 610476 04.05.2017

1 Introduction
Scalable I/O is a challenging task in current HPC systems. For an increasing number of

applications access to fast and reliable I/O systems becomes critical. The performance

improvements in HPC for the last generations of supercomputers strongly favoured

computation over I/O capabilities. This trend will cause I/O to become a major limiting factor

for the scalability of Exascale systems.

In the DEEP-ER project this problem is addressed on different levels. As a fundamental layer

the hardware architecture (WP3) provides storage that is local to the compute nodes

(NVMe). With a constant ratio between the number of I/O units and computing power, this

new system allows to scale to large systems. The BeeGFS parallel filesystem makes this

scalable architecture available for the layers above it by providing the concept of cache

domains.

In addition, WP4 has been working on the packages SIONlib and E10, which are developed

from the application perspective to ease the use of this new architecture. Depending on the

I/O strategy, applications can use one of the libraries or both, in order to maximise the

benefits of the DEEP-ER concepts. This minimises the need for code intrusion in the

applications while still using the advances of the underlying layers.

While deliverable D4.2 focused on the APIs that are accessible to the applications, the

present deliverable describes the implementation of the APIs themselves.

D4.4 I/O software packages

8

DEEP-ER - 610476 04.05.2017

2 BeeGFS

The connection between the storage devices and the applications is provided by the

filesystem. In the DEEP-ER project BeeGFS constitutes the parallel filesystem for the I/O

middleware (SIONlib or E10) and also gives direct access to the applications. See the

following overview about the different parts of the BeeGFS development in the context to the

DEEP-ER project.

2.1 Intermediate layer

The intermediate layer is implemented as designed in the deliverable 4.1 and shown in

Figure 2.1-1. The global filesystem is a common BeeGFS installation. The servers use

spinning hard-drives to store the file content and SSDs to store the metadata of the files. The

cache filesystem is implemented by BeeOND and the files, including the metadata, are

stored on the NVMe devices. BeeOND is a startup script which supports dynamic and

flexible creation of a BeeGFS filesystem. It allows the creation of a BeeGFS instance during

the placement of a job in the cluster by its queuing system. In the DEEP-ER project a cache

domain consists of one node. The cache FS is created during the start up. This system has

been deployed on the DEEP Cluster and on the DEEP-ER SDV.

Figure 2.1-1: Cache architecture

D4.4 I/O software packages

9

DEEP-ER - 610476 04.05.2017

2.2 I/O API extension

2.2.1 BeeGFS API

The BeeGFS Striping API allows creating files in the filesystem with a data stripe

configuration that matches the I/O requirements of the application. The application can define

how many targets, which stripe size and which stripe pattern (RAID0 or Buddy Mirroring)

should be used. For example, the application can select more targets for big files and fewer

targets for smaller files. This helps to optimize the I/O throughput of the applications. The API

allows the application to query the stripe configuration and the used targets of a file from

BeeGFS. It is also possible to check if a filesystem path is actually inside a BeeGFS

filesystem or not.

2.2.2 Cache API

The cache API is implemented as specified in the deliverable 4.2. During the development of

WP5 additional requirements were added to its specifications, leading to an extension of the

API. All requirements were implemented and tested. Initially BeeGFS provided a

synchronous API, which was later extended to work asynchronously. This helped the

developers to integrate the cache API into their applications and test the functionality at an

early stage in the project. The implementation of the synchronous version of the API could be

finished earlier than the asynchronous version; this allowed a decoupling between the

implementation of asynchronous I/O in BeeGFS as well as the integration into applications.

The application developers can use the synchronous API with the same interfaces as the

asynchronous API. To change from the synchronous API to the asynchronous version the

application only needs to be re-linked with the new version of the library.

2.2.2.1 Cache API feature requests from the application developers

During the prototyping phase several telephone conferences and meetings with WP5 and

WP6 took place to collect several additional requirements from the application developers.

This lead to extra implementations and testing of the new features:

¶ The flush and the prefetch functions support a ñfollow symlinkò feature in the new

specification. Using a flag, the files and directories behind the symlinks are copied to

the cache filesystem or the global filesystem. To avoid infinite recursion in the

filesystem structure the number of symlinks to follow in a chain is limited to 20.

¶ CRC checksum calculation is supported during the flush and prefetch function. The

cyclic redundancy check (CRC) code is a commonly used and highly efficient method

to calculate checksums for streamed data. The calculation during the flush or prefetch

avoids additional reads from the filesystem to calculate the CRC checksum of files by

the user application.

¶ Two functions were implement and tested giving more control to the asynchronous

flush and the prefetch operations. The API provides a function to check if the flush of

a file or directory is ongoing, and a function to stop a running flush or prefetch.

Adaptions to the original API allowed fulfilling all application requirements.

D4.4 I/O software packages

10

DEEP-ER - 610476 04.05.2017

2.2.2.2 Cache API implementation details

The synchronous version of the API implements the full function set of the specification and

the requested API features ñfollow symlinkò and ñcalculate CRC checksumò. The processing

of the functions is done in the context of the thread that called the API function.

The asynchronous version of the API implements all functions of the synchronous API and in

addition implements the requested ñcontrol functionsò for the asynchronous flush or prefetch.

All prefetch and flush operations are executed asynchronously in this version of the API. The

asynchronous implementation allows improving the performance compared to the

synchronous version in several ways. First the flush or prefetch functions are offloaded to a

cache daemon, which is running on the same node in the asynchronous version. The

offloading affects all prefetch or flush functions - the ñfollow symlinkò, the ñcalculate CRC

checksumò and the ñbyte rangeò version.

A second performance improvement is implemented by splitting big files into byte range

flushes or prefetches to use multiple threads. The number of worker threads of the cache

daemon is configurable, because it has to be adjusted to the cluster environment. A thread

count which is too high could have a negative impact on the cluster jobs on the node and if

the thread count is to low the cluster jobs of the node have longer I/O waits. The minimal size

of a file before it should be split is configurable as well. This size is also used as byte range

size for the range flushes or prefetches, so big files are split multiple times for range flushes

or prefetches.

All asynchronous requests are processed by the cache daemon in a first in - first out queue.

Lookup tables are used to get an efficient access to the requests in the different stages. The

failed requests, the CRC checksums of finished requests and requests that currently

processed are organised in different lookup tables. Errors during the asynchronous flushes

1. Asynchronous
API call

1. Wait()

4. Process work

Synchronous API call
(executed by the thread

of the caller process)

Application workflow

User application

I/0 subsystem

DEEP-ER cache
library

DEEP-ER cache API

Messaging
facility

Cache file system Global file system

DEEP-ER cache daemon

Worker
threads

Messaging
facility

Lookup list
of requests

in processing

2. Add
request
to FIFO

3.a Worker
take request
from FIFO

2.a
Check

list

3.b Add
request
to list

FIFO with
new

requests

Lookup
list

5. remove
request
from list

2.b
Check

list

 Workflow synchronous API call
 Workflow asynchronous API call
 Workflow wait call

Figure 2.2-1: Asynchronous API architecture

D4.4 I/O software packages

11

DEEP-ER - 610476 04.05.2017

and prefetches are reported to the API by the wait function. The architecture and the

workflow of the synchronous/asynchronous operations are shown in Figure 2.2-1.

A code example for the usage of the cache API is given in Figure 2.2-2.

// create the directory on c ache FS

f uncError = deeper_cache_mkdir(dir.c_str(), S_IRWXU | S_IRGRP |

S_IROTH);

if(funcError == DEEPER_RETVAL_ERROR)

{

 // error handling

}

// prefetch the file from global FS to the cache FS

funcError = deep er_cache_prefetch(file.c_str(),

DEEPER_PREFETCH_NONE);

if(funcError == DEEPER_RETVAL_ERROR)

{

 // error handling

}

é // do something during the prefetch

// wait until the prefetch is finished

funcError = deeper_cache_prefetch_wait(file.c_str(),

DEEPER_PREFETCH_NONE);

if(funcError == DEEPER_RETVAL_ERROR)

{

 // error handling

}

// open file in the cache FS

int cacheFD = deeper_cache_open(file.c_str(), O_RDWR, S_IRWXU |

S_IRGRP | S_IROTH , DEEPER_OPEN_NONE);

if(cacheFD == - 1)

{

 // error handling

}

é // modify the file in the cache FS by POSIX operations

// close file in the cache FS

funcError = deeper_cache_close(cacheFD);

if(funcError == DEEPER_RETVAL_ERROR)

{

 // error handling

}

// flush the file from the cache FS to the global FS and wait until

// the flush is finished

D4.4 I/O software packages

12

DEEP-ER - 610476 04.05.2017

funcE rror = deeper_cache_flush(file.c_str(), DEEPER_FLUSH_WAIT);

if(funcError == DEEPER_RETVAL_ERROR)

{

 // error handling

}

Figure 2.2-2: Code example of the asynchronous cache API.

2.3 BeeGFS on the DEEP Booster nodes

In the DEEP-ER project the Intel Knights Corner (KNC)-based Booster constructed within

DEEP has been used as software development and test platform. Porting BeeGFS to KNC

involved changes in the beegfs-client code. The Intel Knights Landing (KNL) servers, that

became available just recently and have been integrated in the DEEP-ER SDV, is different to

its predecessor in that every BeeGFS package can be installed without any additional

adaptation. The first preliminary tests of all BeeGFS components including the BeeOND

scripts have been successfully done and everything works as expected.

2.4 Resiliency and reliability

A data mirroring system has been implemented, featuring a built-in high availability

functionality in order to achieve better resiliency and reliability. Using this system, the data is

still accessible to the cluster even if a node that contains a mirrored file should fail. Mirroring

can be enabled on a per-directory basis, so specially selected data in the filesystem can be

mirrored. Data mirroring on storage targets is based on so-called buddy groups, in general

consisting of two targets, a primary target and a secondary target. They should be located on

different physical servers and should be of the same size. It is not required to fulfil both

requirements, but this configuration is recommended to get an optimal performance. A target

that belongs to a buddy group is still available to store unmirrored data as well, making it

possible to have a filesystem that only mirrors a certain subset of the data. Figure 2.4-1

shows how 2 mirrored files (yellow, red) and one unmirrored file (green) is striped across the

targets when mirroring is enabled. Modifying operations will always be sent to the primary

target first, which takes care of the mirroring process. File contents are mirrored

synchronously, i.e. the client operation completes after both copies of the data were

transferred to the servers. If, for some reason, the primary storage target of a buddy group is

unreachable for the system, a failover to the secondary target will be issued. In this case, the

secondary target will become primary target from that point on.

To avoid split-brain situations (e.g. a disconnection of about 50% of the whole system could

trigger the two ï now separated ï systems to run independently from each other) failover

information has to be propagated to every component of the system, before the actual

failover is performed. The failover does not happen immediately and certain timeouts need to

be maintained.

Originally, we studied the possibility to implement asynchronous data triplication as an

additional step. However, several unforeseen issues, e.g. problems with the network

protocol, and changes in the API requirements, forced us to redefine our priorities. Since for

the applications the implemented replication feature is already a major enhancement for

resiliency and reliability and they do not expect needing further levels or replication within the

DEEP-ER project, we decided to set a low priority for triplication.

D4.4 I/O software packages

13

DEEP-ER - 610476 04.05.2017

Figure 2.4-1: File Striping with BuddyMirrored and unmirrored files

2.5 Compression

Modern local file systems, such as Zettabyte File System (ZFS), support transparent

compression and can be used as backend for BeeGFS. We successfully tested this feature

and evaluated its interaction with BeeGFS. As a result, we can fully recommend using the

underlying filesystemôs compression if it is required.

2.6 Data placement

BeeGFS allows defining a set of preferred storage targets and metadata servers to store

files. These policies can be set for every BeeGFS mount as part of the client moduleôs

configuration. The data placement policy can be defined for every BeeGFS mount point. It is

possible to mount the same BeeGFS multiple times on the same node. Every mount could

be configured with a different policy.

2.7 Monitoring and statistics of BeeGFS

During the project BeeGFS was extended with additional statistics to monitor the filesystem.

The gathered data can be broken down to individual clients or users. This can be helpful to

identify cluster jobs which are heavily using the filesystem or have bad I/O patterns. In

addition, information gathered from the monitoring system can be used to identify

performance-critical parts in the I/O subsystem of the applications.

2.7.1 Command line tool beegfs-ctl

The beegfs - ctl is a command line tool which provides statistics and monitoring

information of BeeGFS as parsable output. The integration of the newly-implemented

statistics in beegfs-ctl is covered below.

D4.4 I/O software packages

14

DEEP-ER - 610476 04.05.2017

The storage statistics on a per-user basis can be queried with the beegfs - ctl command as

follows:

beegfs - ctl -- userstats -- nodetype=storage -- interval=1

Figure 2.7-1: Output of beegfs-ctl which contains storage statistics of users

The metadata statistics on a per-user basis can be queried with the beegfs - ctl command

as follows:

beegfs - ctl -- userstats -- nodetype=metadata -- interval=1

Figure 2.7-2: Output of beegfs-ctl which contains metadata statistics of users

The storage statistics on a per-client basis can be queried with the beegfs - ctl command

as follows:

beegfs - ctl -- clientstats -- nodetype=storage -- interval=1

Figure 2.7-3: Output of beegfs-ctl which contains storage statistics of beegfs-clients

The metadata statistics on a per-client basis can be queried with the beegfs - ctl command

as follows:

beegfs - ctl -- clientstats -- nodetype=metadata -- interval=1

Figure 2.7-4: Output of beegfs-ctl which contains metadata statistics of beegfs-clients

In the figures Figure 2.7-1 to Figure 2.7-4 the output of the beegfs - ctl shows some

statistics about the I/O operations. The first row (Sum:) of every interval shows a sum of all

D4.4 I/O software packages

15

DEEP-ER - 610476 04.05.2017

operations which was done by all the user/client during the interval. The first column contains

the UID/user name or IP-address/hostname of the I/O producer. The second column ([sum])

shows the sum of all operations which was done by a user/client. All following columns

contain the number of operations of a special I/O operation. The monitoring system counts

around 60 different metadata and storage operations. The following I/O operations happened

in the examples:

¶ close: close file operation

¶ flockRg: byte range file lock (flock)

¶ getFSize: get local file size

¶ MiB-rd/s: read throughput in mebibytes per second

¶ MiB-wr/s: write throughput in mebibytes per second

¶ open: open file operation

¶ ops-rd: read operations

¶ ops-wr: write operations

¶ revalLI: revalidate intent operation, not directly triggered by the user

¶ sAttr: set file attribute

¶ stat: stat operation on a file

2.7.2 Webserver beegfs-admon

The beegfs-admon is a webserver that provides statistics and monitoring information. This

data, and the information provided in the previous section, can be requested by using HTTP

GET and POST requests. The beegfs-admon packages also contain a platform independent

Java GUI to visualize the information. An example of the Java GUI with a metadata client

statistics view and storage client statistics view are shown in Figure 2.7-5.

Figure 2.7-5: Client metadata and storage statistics in the admon GUI

D4.4 I/O software packages

16

DEEP-ER - 610476 04.05.2017

2.8 Open Source

BeeGFS is released under an OpenSource license since the 23rd of February 2016. The

source code is available on our website http://www.beegfs.com/content/source-code/.

2.9 Extoll Support

In the design of the I/O solution, the TCP over Extoll implementation constitutes the

communication layer of BeeGFS. During the test on the DEEP-ER SDV we recognized a

good I/O performance for 16 and fewer TCP streams. However, the throughput drops to less

than 50 MByte/s in tests with more TCP streams. After several tests and benchmarks, this

issue could be tracked down to limitations of TCP over Extoll. Although, the TCP over Extoll

performance will be investigated and the implementation will be enhanced by Extoll, FHG-

ITWM will implement support of the native Extoll protocol in BeeGFS to resolve the issues

with TCP over Extoll and to achieve the maximum performance of Extoll. Originally, we

expected that TCP over Extoll could provide nearly the full performance of the hardware, so

this additional development work was not planned initially in the project and hence effects the

distribution of the available resources. However, the high impact on the performance of the

system justifies the change in priorities to maximize the projects benefits, since it is critical for

achieving the projectôs main goals.

2.10 BeeGFS Summary and Conclusions

The BeeGFS approach in DEEP-ER addresses the problem of concurrent I/O on the storage

system in common cluster environments. The cache filesystems help to partition the I/O and

relieve the global storage system of the cluster. The applications can use the new filesystem

architecture through the developed APIs. Exascale clusters will need a bigger storage

system, what increases the probability that a part of the storage system fails. This topic is

addressed by the implemented mirroring feature of BeeGFS. The new I/O statistics of the

monitoring system help the application developers and the cluster administrators to identify

performance issues.

D4.4 I/O software packages

17

DEEP-ER - 610476 04.05.2017

3 SIONlib

3.1 Overview

One of the major goals of SIONlib is to provide support for parallel task-local I/O at large

scale. In this section we will first cover the general approaches to optimise task-local I/O on

large scale and describe the applied approaches of SIONlib to avoid different bottlenecks

that occur when running traditional task-local I/O at large scale. The following part of this

section will then cover the new developments in SIONlib done within the DEEP-ER project.

SIONlib is designed to speedup task-local I/O and to achieve this goal one of the key

elements is the reduction of the number of files. In task-local I/O every task writes its data to

its own file. For large task numbers this concept results in a correspondingly large file count.

This in turn causes significant load on meta-data servers and introduces delays of several

minutes in the program execution and hence limits scalability.

To avoid this bottleneck, SIONlib maps the task-local I/O of the application tasks to chunks of

a shared file container, which reduces the number of files significantly. However, using fewer

files than tasks results in shared files accessed concurrently by the application tasks. This

can cause contention when file access is not coordinated. One point where serialisation in

shared files access occurs is the concurrent access to single file system blocks from multiple

tasks. A file system block is manipulated in ñread, modify, writeò cycles and can only be

handled by a single task at a time. In order to prevent this serialisation SIONlib aligns access

in the shared file to the file system block size, therefore ensuring exclusive access to a file

system block by only one task.

In a similar way, as many files in a single directory cause meta-data contention, further

scaling of task-local I/O to shared files leads to contention in the file meta-data management.

Indeed, changes to file meta-data (e.g. i-node modifications) are typically performed by a

single component of the file system. SIONlib addresses this bottleneck by using multiple files

while keeping the number of files small compared to the number of tasks.

In the following we describe the developments of SIONlib that were done in the DEEP-ER

project. The structure follows the DoW.

¶ Integration of an additional parallel API driver layer for OmpSs. This will extend the

list of currently supported parallel paradigms (MPI, OMP, hybrid).

o An analysis of this subtask by the involved groups from WP4 and WP5

showed that the current functionality of SIONlib already covers the described

use case. One possible approach is the use of SIONlibôs key-value mode as

described in section 3.2. This feature has been developed recently and was

not available at the beginning of the project. In the desired use case, SIONlib

operations will be performed by only one OmpSs task at a time, whereas the

SIONlib file handle will be shared by all tasks, which perform I/O on the

SIONlib file container. Accesses to the file will then be harmonized by

coordinating the access to the shared file handle inside OmpSs.

¶ Adaption of the existing implementation for MPI, OMP and hybrid to the MPI-

implementations of DEEP-ER parallel environment.

o Large amounts of the code have been refactored in the course of the

DEEP-ER project to support development and integration of new features (see

section 3.3). In this way, the new buddy checkpointing feature (see section

D4.4 I/O software packages

18

DEEP-ER - 610476 04.05.2017

3.4) could be implemented on top of existing SIONlib software layers. Beyond

this additional functionality no further technical changes of the interfaces and

implementation were needed to adapt SIONlib to the DEEP-ER parallel

environment.

¶ Enhancement of the SIONlib meta-data structure and the functionality of the

underlying parallel software layer to support time-varying task-mappings.

o The aforementioned key-value mode of SIONlib (see section 3.2) is designed

to handle time-varying task-mappings since it allows for a separation between

the tasks directly involved in the I/O operations and those that are created

only for computation. This feature can be used without losing the relation

between those different tasks.

¶ Enhancement of SIONlib to support buffering of task-local data in memory caches on

compute- or I/O-elements. These would allow a deferred or asynchronous parallel

I/O.

o The additional features of SIONlib developed by WP5 to support the SCR

multi-level checkpointing library enable using asynchronous I/O. This is also

the preferred way to exploit the asynchronous I/O feature of BeeGFS from

SIONlib.

¶ Adapt the internal testing and benchmarking features to cover the new features.

o The development of the new features for the project is test-driven. The

SIONlib distribution package contains a set of parallel and serial tests for each

of the new features, which allows verifying the correct execution of SIONlib

during the installation process. This means testing is at the core of the

development. The new features will be continuously benchmarked during and

until the end of the project.

3.2 Key-value mode

The key-value mode in SIONlib allows correlating keys with payload data. Therefore SIONlib

provides special write and read operations, which need a key as additional parameter. The

data of write operations is then internally assigned to the according key. In this way data

chunks written by one task can be separated into different sub-chunks, each with an

individual key. This scheme can be used to separate data written by different threads of one

process using the thread index as key.

Files that use the key-value mode can be exclusively accessed using this feature. The

reason is that meta-data for the key-value is stored in the data sections of the file, which

typically only contain user data for non-key-value opened SIONlib files. The benefit of this

design decision is that SIONlib can handle key-value meta-data on a task-local level and

does not have to manage this meta-data globally, with resulting global collective

communication operations. Furthermore, this approach minimises the changes needed in

meta-data handling and avoids changes in the file layout of the SIONlib file container.

In general, the implementation is not designed to replace a real key-value store or a

database; instead it is specifically designed to handle the problem of time-varying task-

mappings. Since the implementation is transparent for the user it can always be optimised

toward different use cases without the need for significant changes in the user code. The

preferred strategy when writing in key-value mode can be chosen in the open mode string,

e.g.

D4.4 I/O software packages

19

DEEP-ER - 610476 04.05.2017

sion_paropen_mpi("file.sion", "bw,keyval=inline", é);

Without explicit choice of the key-value mode the default is selected, which currently is the

inline mode.

There are new API calls for writing and reading from/to key-value mode files, since the key is

needed as additional argument. The two basic commands to make use of keys are:

size_t sion_fwrite_key(const void *data,

 uint64_t key,

 size_t size,

 size_t nit ems,

 int sid);

and

size_t sion_fread_key(void *data,

 uint64_t key,

 size_t size,

 size_t nitems,

 int sid);

These write to and read from a file with key-value mode, respectively.

The data layout for the current key-value implementation (called ñinlineò) adds a header to

each write request containing the key and the size. So a single write call writes this meta-

data and the actual data. Since the user is in part detached from the underlying file layout,

the behaviour of write and read calls are changed: the size of every I/O call in non-key-value

mode has to adhere the maximum of chunksize bytes. This limitation is dropped when key-

value mode is used, so the size can be chosen freely. Although this might sacrifice write

performance when used unintentionally, removing this limitation proved to be very

convenient and may be considered for regular SIONlib write calls as well in future versions.

For more in-depth information on the key-value API we refer to the documentation on the

SIONlib website [SIONlib website].

3.3 Redesign and restructuring

In order to simplify the development of new features for the project, SIONlibôs internal

structure was redesigned. This significantly reduced the amount of work needed to develop

and test the buddy checkpointing feature.

The original and revised application layouts are shown in Figure 3.3-1 and Figure 3.3-2,

respectively.

D4.4 I/O software packages

20

DEEP-ER - 610476 04.05.2017

Figure 3.3-1: Original software layout of SIONlib

Figure 3.3-2: Revised software layout of SIONlib

In Figure 3.3-2 the ANSI C or POSIX-I/O layer provides the interface between SIONlib and

the file system. The serial layer uses this interface to provide all the functionalities and

algorithms required by the node to efficiently utilise the underlying file system API. For pre- or

post-processing purposes this serial layer can be access directly from serial tools using the

serial API. The parallel layer coordinates file access implementing only the parallel

components of the algorithms and then calling the underlying serial layer.

Up to this layer the structure remained unchanged. The first API on top of the parallel layer

was originally the MPI API. Over time the OpenMP and the hybrid API were added as a

response to application demands and, in the case of tools (like Score-P or Scalasca), a

generic API was added for more flexibility. This requirement comes from the fact that during

start up such tools usually do not have sufficient knowledge about the communication layer

that is used by the application and they need generic calls. This was the status before the

project.

With the DEEP-ER developments all parallel APIs (MPI, OpenMP and hybrid) now use the

generic API as opposed to the former layout. Since SIONlib was originally primarily designed

for MPI there was much redundant functionality implemented for the other APIs as they were

added. With the new structure the different parallel APIs only implement a small set of

functions specific for this interface. These functions fulfil generic patterns, e.g. gathering data

from all tasks and executing a command like writing the data to disk. The generic API uses

these generic functions as building blocks to implement the generic parallel I/O algorithms.

D4.4 I/O software packages

21

DEEP-ER - 610476 04.05.2017

This separation of communication and functionality has two major advantages. First of all it

provides a single module to implement new functionalities, like buddy checkpointing which is

described in the following section. A similar advantage also holds for the opposite direction:

new communication layers only need to implement the limited set of communication

primitives. There is no need for additional algorithms to be implemented for a new

communication layer since the algorithms are based on the communication primitives.

3.4 Buddy checkpointing

3.4.1 Basic concepts

The concept of buddy checkpointing is driven by resiliency. While enabling highly scalable

I/O, local storage also causes data loss in case a node fails. Since the aggregated

performance of local storage is assumed to be significantly better than that of the global file

system, parts of the work can be traded to add redundancy to the local layer while preserving

high efficiency.

One obvious way to implement redundancy is to copy the local data to the local storage of a

remote node. In this context the associated node is referred to as óbuddy nodeô.

Figure 3.4-1: Normal restart from local data (left) and restart from local data using buddy checkpointing
after node failure (right).

Figure 3.4-1 shows the data flow for different restart conditions. For the case where local

checkpointing data is only used to speed up the restart process each cache domain provides

the data for the local processes. Since the local storage is connected to the according nodes

a node failure also causes the local storage to be inaccessible. To solve this problem we

request the copied data from the buddy node. This buddy node will then provide the data

after it reads its own local data. In order to transport the data SIONlib uses the

communication layer of the application, e.g. MPI.

3.4.2 Design

With the new internal structure, buddy checkpointing could be integrated in the parallel layer

without the need for different implementations for different APIs. Figure 3.4-2 shows the

different components where the buddy checkpointing feature changes former behaviour.

D4.4 I/O software packages

22

DEEP-ER - 610476 04.05.2017

Figure 3.4-2: Buddy checkpointing integration

Internally the code now branches and runs different methods depending on whether buddy

checkpointing is enabled or not. The relevant code parts are implemented in a new module,

which makes use of the communication layer of the application. It is a general design

decision of SIONlib to use the communication layer of the application in order to avoid

additional dependencies.

In order to enable buddy checkpointing applications need to pass a new option ñbuddy=Nò to

the open option string. This option defines the level of buddy checkpointing and in case it is

omitted it is set to the default value of 1 (meaning that one additional copy of the data is

kept). The level equals the number of redundant copies of the data written, so a level of 2

means the data exists in the form it usually would for writing with SIONlib and two copies are

present on disjoint local storages. Since there is no benefit in writing buddy data to the same

node twice the number of cache domains represents a natural limit. Although there is no

limitation in SIONlib, the performance penalty will usually determine a reasonable limit for the

buddy level, which is significantly smaller than the number of cache domains. The failure of

any cache domain during the application execution can considered significantly higher than

the simultaneous failure of two cache domains. Hence, for most use cases the default level

of 1 will be an good choice.

3.4.3 Communication scheme

The implementation of buddy checkpointing with the generic primitives eases the support for

different communication layers and the maintenance of the code and tests. As a result the

algorithms are also not formulated in the scope of e.g. MPI but with the generic primitives,

which can be implemented for MPI as well as for OpenMP or hybrid applications. This leads

to communication schemes, which incorporate the features of the potentially different

underlying parallel APIs.

In general SIONlib supports different I/O strategies that were added over time, as there was

demand from applications. The first basic scenario, which SIONlib was optimised for, is

checkpointing a large amount of data of many tasks. For this scenario SIONlib only uses

collective calls for open and close routines while all read and write routines are individual

without any communication. Avoiding unnecessary communication is one of the optimisation

strategies of SIONlib. The relevant bottlenecks change for a scenario where a large number

of tasks are involved in I/O but only a small amount of data is written. In this case file system

block alignment results in potentially large amounts of allocated but unused disk space.

Therefore, SIONlib also supports a collective mode which needs to communicate during read

D4.4 I/O software packages

23

DEEP-ER - 610476 04.05.2017

or write operations but can result in significantly denser files and better bandwidths, since

less empty data needs to be read or written.

Since buddy checkpointing naturally involves communication one important feature is that it

can only be used in the collective mode. In order to collect the data correctly different groups

are formed to define different roles during buddy checkpointing.

Figure 3.4-3: Communication groups

Figure 3.4-3 shows one example of possible communication groups for three cache domains

with a different number of tasks. Inside these groups the tasks fulfil different roles. In the

middle cache domain (LGrp1), task 0 (T0) acts as collector in the red group while taking the

role of a sender in the green group. It is always the first task in a local group that collects the

data of the other group members, both for local writes and for remote writes from the buddy

group. For implementation reasons the remaining tasks in a local group are not excluded

from the communication group, but are assigned an according role. This prevents them from

sending their data not only to the first task of the buddy node but also to the first task in their

own node. This is indicated with the dashed lines for both groups in the figure.

With these groups well defined SIONlib transfers the data between them. The algorithm for

data transfer takes into account that a task may have different roles. In this way the data

transfer becomes a multi-step process depending on different factors, like whether the

number of cache domains is even or odd, and which level of buddy checkpointing is

executed.

The implementation does not use the buddy nodes explicitly but a mapping that describes

the buddy relation. This allows different levels of buddy checkpointing to reuse the algorithm

that handles different roles.

3.4.4 Comparison with native buddy checkpointing in SCR

As part of the Co-design between WP5 and WP4, the buddy checkpointing functionality in

SIONlib was identified as a good way to make use of the strengths of both, the scalable

checkpoint / restart system (SCR) and SIONlib. Where SCR shines with its resiliency

features, its task-local I/O strategy is the ideal candidate to be optimised with SIONlib.

D4.4 I/O software packages

24

DEEP-ER - 610476 04.05.2017

The most obvious differences in I/O behaviour between pure SCR and SIONlib are how the

data is read and the number of operations involved in the checkpointing/restart process.

Since SCR has no control over the data during the write and read calls, it has to first copy all

missing data to local storage in the buddy nodes. In Figure 3.4-4 this behaviour is depicted

for the read and write case in the left column. The operations are labelled ñWò and ñRò for

write and read respectively, and the same numbers mark processes that can run in parallel.

The operations coloured in red mark additional operations that SCR does and that SIONlib

does not have to do.

Figure 3.4-4: Comparison of read and write behaviour of SCR (left) and SIONlib (right)

First of all we describe the read behaviour. Since node A does not restart with its local data it

needs to get the data from its buddy node B. In SCR this means copying the data to A from B

and then reading it from the local storage. This operation needs to be done first; the green

arrow labelled ñSCRò shows the copying process from B to A and the operations are

labelled ñ1ò. With all local data recovered, both nodes can restart from their local data.

In the case of SIONlib restarting with no local data being available on node A means that the

data is read on demand. First node B reads from the local storage and then sends the

requested buddy data to node A. Since the local read operations are serialised and all data

needs to be read from node B, the number of operations is the same for this node.

Regarding node A, the difference between the two approaches is that SIONlib directly

transfers the data from node B into node Aôs memory without the need for additional reads or

writes to the local storage of this node.

As indicated by the numbers, the two additional operations could be theoretically executed in

parallel with the two read operations of node B.

An analysis of writing buddy checkpoints shows similar result. Since SCR does not handle

the write calls, it needs to re-read the data written locally to be able to copy it to another

D4.4 I/O software packages

25

DEEP-ER - 610476 04.05.2017

node. This adds a read operation to the scheme, which can be avoided by SIONlib.

Regarding the parallel operations the two schemes also show a similar behaviour as in the

read case. The reason why the operations ñW2ò and ñW3ò have different numbers is the

communication pattern, e.g. odd and even nodes changing roles to avoid deadlocks.

Besides the reduction of I/O operations SIONlib can also reduce the number of local files per

cache domain and hence also for the checkpoints that are migrated to the global storage.

One single SIONlib-file per cache domain is expected to be a good choice for the envisioned

hardware configuration.

3.4.5 Example

In Figure 3.4-5 we show a basic example how to write files with SIONlib using buddy

checkpointing.

#include <stdlib.h>

#include <string.h>

#include <mpi.h>

#include <sion.h>

int main(int argc, char* argv[])

{

 int numFiles = - 1;

 MPI_Comm lComm;

 sion_int64 chunksize = 100;

 int fsblksize = - 1;

 char* newfname = NULL;

 char* buffer = NULL;

 int sid = - 1;

 int lgroup = - 1;

 int rank = - 1;

 MPI_Init(&argc, &argv);

 MPI_Comm_rank(MPI_COMM_WORLD, &rank);

 if (rank < 2) {

 lgroup = 0;

 }

 else {

 lgroup = 1;

 }

 MPI_Comm_split(MPI_COMM_WORLD, lgroup , rank, &lC omm);

 buffer = (char*)malloc(chunksize);

 memset(buffer, 'A' + rank, chunksize);

 sid = sion_paropen_mpi("simple.sion",

 "w ,buddy ",

D4.4 I/O software packages

26

DEEP-ER - 610476 04.05.2017

 &numFiles,

 MPI_COMM_WORLD,

 &lComm,

 &chunksize,

 &fsblksize,

 &rank,

 NULL,

 &newfname);

 if (sid >= 0) {

 sion_ coll_ fwrite(buffer,

 sizeof (char),

 chunksize,

 sid);

 sion_parclose_mpi(sid);

 }

 else {

 fprintf(stderr, "on rank %d: error sid = %d \ n", rank, sid);

 }

 free(buffer);

 return 0;

}

Figure 3.4-5: Basic usage of buddy checkpointing in SIONlib

In this example we create two local groups. The first two ranks belong to the first group and

the remaining ranks to the second. If BeeGFS is used to manage the local storage, these

groups would be chosen according to the BeeGFS cache domains.

The example given in D4.2 shows the regular writing of SIONlib files. Beyond the creation of

local groups, the important changes to add buddy checkpointing are:

¶ numFiles is set to - 1 which tells SIONlib to use the communicator lComm to create

I/O groups. These groups should be chosen according to the local storage.

¶ sion_ coll_ fwrite is used to write the data since buddy checkpointing involves

communication with the buddy node in the write process, as described above.

3.5 Open Source

SIONlib is release under an Open Source (BSD 3-Clause) license. The source code and

documentation are available on the SIONlib website [SIONlib website].

3.6 SIONlib Summary and Conclusions

In DEEP-ER, SIONlib provides buddy checkpointing to ease the use of local storage for

resiliency. As checkpointing is a major use case for SIONlib, the extension to buddy

checkpointing lets applications take advantage of local storage easily while still using a

mature and long tested I/O library. This provides a benefit for applications already using

D4.4 I/O software packages

27

DEEP-ER - 610476 04.05.2017

SIONlib, since there are no major changes needed to enable buddy checkpoining. On the

other side, applications which integrate SIONlib mostly for the provided buddy checkpointing

functionality benefit from the I/O optimisations which are already integrated into SIONlib.

D4.4 I/O software packages

28

DEEP-ER - 610476 04.05.2017

4 E10

The Exascale10 description in D4.4 will address the following aspects:

1. Exascale10 contributions to the DEEP-ER project

2. Description of the proposed Exascale10 hints extensions for MPI-IO

3. Description of the Exascale10 architecture and implementation

4. Integration of Exascale10 within DEEP-ER applications

5. Exascale10 source code licensing and release

6. Summary and conclusions

4.1 Exascale10 Contributions

Exascale10 contributes to the DEEP-ER project by providing improvements to existing

collective I/O implementations. The ROMIO middleware (a popular implementation of the

MPI-IO specifications from Argonne National Laboratory) is used as substrate into which the

new DEEP-ER hardware enabled functionalities are included, maintaining a familiar, widely

adopted, I/O interface, minimising the integration effort of the new features into existing and

future applications.

An important advantage is the use of the NVMe devices integrated in the nodes of the

DEEP-ER Prototype. This fast, persistent, cache layer amplifies collective I/O performance,

and more generally, any I/O operation. The new memory tier in the DEEP-ER Prototype is

made available to applications through the MPI-IO interface by means of additional hints,

described in detail in the rest of this document. The new hints rely on the underlying

Exascale10 code inside ROMIO to efficiently move data to and from the cache layer.

Figure 4.1-1: Exascale10 software stack

The Exascale10 effort in DEEP-ER is twofold. Firstly, an extension of the Universal File

System driver in ROMIO (UFS) was developed, providing cache access to any parallel file

system (e.g. Lustre, GPFS, etc). Secondly, a new BeeGFS driver was developed, taking

advantage of the native BeeGFS cache APIs to provide the same functionalities of the

D4.4 I/O software packages

29

DEEP-ER - 610476 04.05.2017

universal driver. A high level architecture of the software stack just described is shown in

Figure 4.1-1.

4.2 Exascale10 Hints Extensions for MPI-IO

The Exascale10 hints extension for MPI-IO represents the only way users can access the

DEEP-ER cache layer through MPI-IO. There is currently no additional API, although for the

future it is planned to move the existing functionalities into a separate Exascale10

middleware, not relying on any other implementation.

Follows a list of hints and corresponding description:

¶ e10_cache : used to enable (or disable) access to the cache. If set to enable

every collective I/O write operation will be directed to the cache. Additionally, the hint

can be also set to coherent to provide cache coherency to parallel applications

accessing the same file. In the coherent mode of operation, every write will acquire a

lock on the requested file extent. This lock will be released only when data in the

cache has been made persistent in the global file system. Default value is disable .

¶ e10_cache_path : used only in the UFS driver to tell the implementation where in

the local file system the cache file should reside. BeeGFS does not need this hint

since the cache layer is completely transparent to the user.

¶ e10_cache_flush_flag : used to tell the implementation when the data in the

cache should be moved to the global file system. If set to flush_immediate will

force the implementation to flush the data in the cache immediately after it has been

written. If set to flush_onclose will tell the implementation to start the flush of the

data in the cache when the file is closed. If set to flush_none will tell the

implementation to skip the flush of the data in the cache. Default value is

flush_immediate .

¶ e10_cache_discard_flag : used to tell the implementation whether a file should

be removed from the cache (enable) or not (disable) when it is closed. Default

value is enable .

¶ e10_cach e_thread : used to tell the implementation how many synchronisation

threads should be used to flush the data from the cache to the global file system.

Default value is 1.

The described hints take advantage of the UFS and BeeGFS driver implementations

described in the following sections.

4.3 Exascale10 Architecture

The cache synchronisation task in the Exascale10 implementation of the UFS driver is

delegated to a separate thread pool, created when the file is opened and destroyed when the

file is closed. Communication between the main thread of the program and the

synchronisation threads in the pool is provided through dedicated set of APIs and queues.

D4.4 I/O software packages

30

DEEP-ER - 610476 04.05.2017

Synchronisation threads and queues are modelled using an object-oriented approach1 and

described by the following data structures and APIs in the UFS driver:

¶ ADIOI_Sync_req_t : data structure describing a synchronisation request used by

the synchronisation thread to read data back from the cache and copy it to the global

file system. The corresponding APIs provided to the threads are:

o ADIOI_Sync_req_init : used by the main thread to create a new

synchronisation request;

o ADIOI_Sync_req_fini : used by the main thread to destroy a

synchronisation request that has completed;

o ADIOI_Sync_req_init_from : used by the main thread to create a new

synchronisation request starting from an existing one;

o ADIOI_Sync_req_get_type : used by the synchronisation thread to get the

type of request, either ADIOI_THREAD_SYNC or ADIOI_THREAD_SHUTDOWN;

o ADIOI_Sync_req_{get,s et}_key : used by the synchronisation thread

and the main thread to get/set the value for a specific key in the request.

Available keys are:

Á ADIOI_SYNC_TYPE: the request type (as explained before);

Á ADIOI_SYNC_OFFSET: the offset of the synchronisation request;

Á ADIOI_SYNC_DATATYPE: the datatype of the synchronisation request;

Á ADIOI_SYNC_COUNT: the count for datatypes in the synchronisation

request;

Á ADIOI_SYNC_REQ: the MPI_Request handle for the request;

Á ADIOI_SYNC_ERR_CODE: the return error_code for the request;

Á ADIOI_SYNC_FFLAGS: the cache flush flags for BeeGFS;

Á ADIOI_SYNC_ALL: all the above.

¶ ADIOI_Atomic_queue_t : data structure describing the queues used by the

synchronisation thread and the main thread to communicate. The corresponding APIs

provided to interact with the queue are:

o ADIOI_Atomic_queue_init : used by main thread to create a queue;

o ADIOI_Atomic_queue_fini : used by main thread to destroy a queue;

o ADIOI_Atomic_queue_push : used by main thread to push a

ADIOI_Sync_req_t to the queue;

o ADIOI_Atom ic_queue_pop : used by synchronisation thread to pop a

ADIOI_Sync_req_t from the queue;

o ADIOI_Atomic_queue_front : used by synchronisation thread to get the

front ADIOI_Sync_req_t from the queue;

o ADIOI_Atomic_queue_back : used by the synchronisation thread to get the

back ADIOI_Sync_req_t from the queue;

o ADIOI_Atomic_queue_size : used to check the number of

ADIOI_Sync_req_t inside the queue;

1 The use of an object-oriented approach makes future extractions of the functionalities

contained inside ROMIO easier and allows for a better recycling of the existing code.

D4.4 I/O software packages

31

DEEP-ER - 610476 04.05.2017

o ADIOI_Atomic_queue_empty : used by the synchronisation thread to check

the status of the queue.

¶ ADIOI_Sync_thread_t : data structure describing the synchronisation thread inside

the thread pool. It contains three queues: 1) a pending queue (pen_), 2) a submitted

queue (sub_) and 3) a waiting queue (wait_). The APIs provided to interact with the

thread are:

o ADIOI_Sync_thread_init : used by the main thread to create a new

synchronisation thread. The corresponding routine starts a new POSIX thread

with a pointer to ADIOI_Sync_thread_start , which internally pops

ADIOI_Sync_req_t (s) from the sub_ queue and satisfies them;

o ADIOI_Sync_thread_fini : used by the main thread to destroy a

synchronisation thread. The corresponding routine will create a

ADIOI_Sync_req_t of type ADIOI_THREAD_SHUTDOWN and push it to the

sub_ queue;

o ADIOI_Sync_thread_enqueue : used by the main thread to send

ADIOI_Sync_req_t (s) to the thread. The corresponding routine will place a

synchronisation request inside the pen_ queue for later processing;

o ADIOI_Sync_thread_flush : used by the main thread to signal the thread

that all the previously sent ADIOI_Sync_req_t (s) should be satisfied. The

corresponding routine moves all the synchronisation requests from the pen_

queue to the sub_ queue. A copy of the ADIOI_Sync_req_t (s) is also

pushed to a wait_ queue for later completion check from the main thread;

o ADIOI_Sync_thread_wait : used by the main thread to wait for all the

ADIOI_Sync_req_t (s) sent to a particular thread to complete. The

corresponding routine invokes MPI_Wait() on all the MPI_Request (s)

contained in the ADIOI_Sync_req_t (s) waiting in the wait_ queue.

For BeeGFS there is no need for a synchronisation thread pool since this is already provided

by the BeeGFS deamon. Thus the synchronisation thread APIs are modified to exploit the

BeeGFS cache APIs and renamed using the suffix ADIOI_BEEGFS_Sync_thread_* in the

BeeGFS driver.

4.3.1 ADIOI_Sync_req_t

The ADIOI_Sync_req_t data structure contains all the information required by the

synchronisation thread to move the data in the file between the cache and the global file

system. The data structure and the APIs used to interact with it are following reported:

struct ADIOI_Sync_req {

 // type of sync thread: ADIOI_THREAD_{SYNC,SHUTDOWN}

 int type_;

 // file extent offset in the file

 ADIO_Offset off_;

 // datatype used to write data to the file

 MPI_Datatype datatype_;

 // number of datatypes written to the file

 int count_;

 // MPI_Request used with MPI_Wait to check completion status

D4.4 I/O software packages

32

DEEP-ER - 610476 04.05.2017

 ADIO_Request *req_;

 // error code returned by synchronisation routine

 int error_code_;

 // flush flags (BeeGFS only)

 int fflags_;

};

typedef struct ADIOI_Sync_req *ADIOI_Sync_req_t;

int ADIOI_Sync_req_init(ADIOI_Sync_req_t *r, ...);

int ADIOI_Sync_req_init_from(ADIOI_Sync_req_t *r,

 ADIOI_Sync_req_t s);

int ADIOI_Sync_req_get_type(ADIOI_Sync_req_t r);

int ADIOI_Sync_req_get_key(ADIOI_Sync_req_t r, ...);

int ADIOI_Sync_req_set_key(ADIOI_Sync_req_t r, ...);

int ADIOI_Sync_req_fini(ADIOI_Sync_req_t *r);

Figure 4.3-1: Synchronisation request object and related APIs

4.3.2 ADIOI_Sync_thread_t

The ADIOI_Sync_thread_t data structure describes the thread(s) inside the

synchronisation pool. The data structure and the APIs used to interact with it are following

reported:

str uct ADIOI_Sync_thread {

 // MPI File handle

 ADIO_File fd_;

 // pthread id

 pthread_t tid_;

 // pending queue

 ADIOI_Atomic_queue_t pen_;

 // submitted queue

 ADIOI_Atomic_queue_t sub_;

 // waiting queue

 ADIOI_Atomic_queue_t wait_;

};

typedef struct ADIOI_Sync_thread *ADIOI_Sync_thread_t;

int ADIOI_Sync_thread_init(ADIOI_Sync_thread_t *t, ...);

int ADIOI_Sync_thread_fini(ADIOI_Sync_thread_t *t);

void ADIOI_Sync_thread_enqueue(ADIOI_Sync_thread_t t,

 ADIOI_Sync_req_t r);

void ADIOI_Sync_thread_flush(ADIOI_Sync_thread_t t);

void ADIOI_Sync_thread_wait(ADIOI_Sync_thread_t t);

Figure 4.3-2: Synchronisation thread and related APIs

4.3.3 Exascale10 Integration in ROMIO

Inside the ROMIO UFS driver there is a set of functions that were modified to integrate the

new cache functionalities:

D4.4 I/O software packages

33

DEEP-ER - 610476 04.05.2017

¶ ADIOI_GEN_OpenColl : used by MPI_File_open() to open a file collectively;

¶ ADIOI_GEN_WriteStridedColl : used by MPI_File_write_{all,at_all}()

to write to a shared file collectively;

¶ ADIOI_GEN_WriteContig : used by ADIOI_GEN_WriteStridedColl() and any

other MPI_File_write() operation to actually write data to the file. In the case of

collective I/O this is invoked for every round of two phase I/O to move the data

shuffled among processes to the file;

¶ ADIOI_GEN_Flush : used by MPI_File_sync() to flush all the previous writes to

the file;

¶ ADIO_Close : used by MPI_File_close() to close an open file.

4.3.4 ADIOI_GEN_OpenColl

Normally this function returns a file handle to every process in the communicator. In the

Exascale10 implementation this was extended to open an additional file in the cache (using

the provided user path in e10_cache_path) and create the thread pool to start later

synchronisation. The cache file is handled as additional MPI_File handle pointer (called

cache_fd) inside the global file handle.

4.3.5 ADIOI_GEN_WriteStridedColl

In order to make sure that writes to the cache will not cause any error due to lack of space,

local file space is allocated upfront for every collective write operation using a new function

called ADIOI_Cache_alloc()
2. The function will return an error code if the allocation has

failed for any reason. The error code from every aggregator is then broadcasted to make

sure that all the processes have succeeded allocating space. The allocation is done in

ADIOI_GEN_WriteStridedColl() since this allows to allocate space only once for every

collective write operation. If allocation was done in ADIOI_GEN_WriteContig() it would

have required to allocate space for every round of two phase I/O, increasing the number of

system calls introduced by the implementation and the number of global synchronisation

points.

4.3.6 ADIOI_GEN_WriteContig

ADIOI_GEN_WriteCont ig() writes data to the file in the cache, creates a corresponding

synchronisation request and sends it to a synchronisation thread in the pool. Following a

code example of how this is done:

void ADIOI_GEN_WriteContig(ADIO_File fd, const void *buf, int count,

 MPI_Datatype datatype, int file_ptr_type,

 ADIO_Offset offset, ADIO_Status *status,

 int *error_code)

{

 int err;

 char *p = (char *)buf;

2
 ADIOI_Cache_alloc() uses the fallocate() system call to allocate space. This system call

does not write any data to the file system but only modifies the file system metadata to reserve blocks.
Nevertheless, this system call only works with EXT4 and XFS file systems.

D4.4 I/O software packages

34

DEEP-ER - 610476 04.05.2017

 ADIO_File fh = fd;

 if (fd - >cache_fd && fd - >cache_fd - >is_open) {

 fh = fd - >cache_fd;

 if (fd - >hints - >e10_cache_coherent == ADIOI_HINT_ENABLE)

 ADIOI_WRITE_LOCK(fd, offset, SEEK_SET, len);

 }

 ...

 while (bytes_xfered < len) {

 wr_count = len ï bytes_xfered;

 err = write(fh - >fd_sys, p, wr_count);

 bytes_xfered += err;

 p += err;

 }

 if (fd - >cache_fd && fd - >cache_fd - >is_open &&

 fd - >hints - >e10_cache_flush_flag != ADIOI_HINT_FLUSHNONE) {

 ADIOI_Sync_req_t sub;

 int threads, curr_thread, idx;

 ADIO_Request *r = (ADIO_Request *)

 ADIOI_Malloc(sizeof (ADIO_Request));

 *r = MPI_REQUEST_NULL;

 threads = fd - >hints - >e10_cache_threads;

 curr_thread = fd - >thread_curr;

 idx = curr_thread % threads;

 // init sync req

 ADIOI_Sync_req_init(&sub, ADIOI_THREAD_SYNC,

 offset, datatype, count,

 req, 0);

 // enqueue sync re quest to thread

 ADIOI_Sync_thread_enqueue(fd - >thread_pool[idx], sub);

 if (fd - >hints - >e10_cache_flush_flag ==

 ADIOI_HINT_FLUSHIMMEDIATE)

 ADIOI_Sync_thread_flush(fd - >thread_pool[idx]);

 // select next thread in the pool

 fd - >thread_curr = (curr_thread + 1) % threads;

 }

}

Figure 4.3-3: For every write a new request is created and submitted to the synchronisation pool

4.3.7 ADIOI_GEN_Flush

ADIOI_GEN_Flush() forces all the data written, and potentially still in the page cache, to

be flushed to the file system. This function was modified to copy all the additional data in the

NVM cache to the global file system. Following a code example of how this is done:

D4.4 I/O software packages

35

DEEP-ER - 610476 04.05.2017

void ADIOI_GEN_Flush(ADIO_File fd, int *error_code)

{

 int err, idx, threads, curr_thread;

 static char myname[] = "ADIOI_GEN_FLUSH";

 if (fd - >cache_fd == NULL ||

 (fd - >cache_fd && !fd - >cache_fd - >is_open) ||

 (fd - >cache_fd && fd - >cache_fd - >is_open &&

 fd - >hints - >e10_cache_flush_flag == ADIOI_HINT_FLUSHNONE))

 goto fn_flush;

 threads = fd - >hints - >e10_cache_threads;

 // Flush all the requests in each thread

 for (idx = 0; idx < threads; idx++)

 ADIOI_Sync_thread_flush(fd - >thread_pool[idx]);

 // Wait for submitted requests to complete

 for (idx = 0; idx < threads; idx++)

 ADIOI_Sync_thread_wait(fd - >thread_pool[idx]);

fn_flush :

 err = fsync(fd - >fd_sys);

 ...

}

Figure 4.3-4: When the file is flushed all the pending requests are forced to the global file system and
checked for completion

If the synchronisation requests were already flushed by the write function,

ADIOI_Sync_thread_flush() will do nothing and just return immediately since the pen_

queue is already empty.

4.3.8 ADIO_Close

ADIO_Close() function closes the MPI_File handle by invoking the corresponding

ADIOI_xxx_Close() routine (where xxx is replace by the name of the file system driver).

In this case close function was modified to invoke ADIO_GEN_Flush() , triggering the

flushing of the data in the cache to the global file system, and call ADIOI_GEN_Close() on

the MPI_File handle of the file in the cache. Following an example of how this is done:

void ADIO_Close(ADIO_File fd, int *error_code)

{

 if (fd - >cache_fd) {

 if (fd - >cache_fd - >is_open) {

 (*(fd - >fns - >ADIOI_xxx_Flush))(fd, error_code);

 (*(fd - >fns - >ADIOI_xxx_Close))(fd - >cache_fd, error_code);

 ADIOI_Sync_thread_pool_fini(fd);

 }

 }

D4.4 I/O software packages

36

DEEP-ER - 610476 04.05.2017

 ...

}

Figure 4.3-5: When the file is closed the file is synchronised with the cache and the cache file is closed

As already said BeeGFS does not need to create any additional thread pool to synchronise

the data in the cache to the global file system. Therefore, out of the previously described

functions the following have been re-implemented in the BeeGFS driver:

¶ ADIOI_BEEGFS_OpenColl

¶ ADIOI_BEEGFS_WriteContig

¶ ADIOI_BEEGFS_Flush

All these functions will use the appropriate BeeGFS APIs for cache handling.

4.4 Exascale10 Integration

In the Exascale10 implementation collective write operations can write data to the cache

instead of the global file system, taking advantage of fast NVMe devices installed in the

compute nodes of the DEEP-ER Prototype and minimising the impact of the global file

system performance on the total runtime. Potentially, since the number of NVMe(s) can grow

with the number of compute nodes, our implementation can scale the write bandwidth

linearly with the number of available memory devices. Write operations to the global file

system can be overlapped with computation if the e10_cache_flush_flag is set to

flush _immediate .

The limitation with this approach is that the file cannot be closed until the cache

synchronisation is completed3. For this reason some changes might be required at the

application level in order to take advantage of the new MPI-IO hints.

3 If the e10_cache hint is set to coherent the file will not be over writable by other

processes during synchronisation.

D4.4 I/O software packages

37

DEEP-ER - 610476 04.05.2017

Figure 4.4-1: Example of standard HPC application workflow (above) and modified E10 workflow (below).

Figure 4.4-1 graphically shows a typical HPC application workflow. HPC codes perform some

computation, generate data, and thus write this data to a shared file for later processing. This

workflow is shown in the upper part of the figure (cache disable). After the compute part is

completed a shared file is opened, data is written to it and then it is closed, ending the first

phase of compute and I/O.

The lower part of the figure (cache enable) displays the workflow modification previously

mentioned and required to take advantage of the DEEP-ER cache. Now, after the compute

part is completed, the shared file (and a certain number of local cache files) is opened, data

is written to the cache and then cache synchronisation (ADIOI_Sync_thread_start) is

started together with the next compute phase, without closing the file. Instead, the file is

closed at the end of the new compute phase, allowing the Exascale10 implementation to

flush the data meanwhile. Figure 4.4-2 shows a C code example for the modified workflow

just discussed.

MPI_Comm comm = MPI_COMM_WORLD;

MPI_File fh_1, fh_2, fh_3, ...;

MPI_Status status;

char *buf;

int count;

// compute #1

compute(&buf, &count);

// open shared file #1

MPI_File_open(comm, ñfile_1ò, MPI_MODE_CREATE, &fh_1);

// write data from compute #1 to shared file #1

MPI_File_write_all(fh_1, buf, count, MPI_CHAR, &status);

