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Executive Summary 

This deliverable describes the three I/O pages that are used in the DEEP-ER project. These 

are the bridging components between the hardware (WP3) in one side and resiliency (WP5) 

and applications (WP6) in the other. A description of the BeeGFS filesystem is presented in 

this document, followed by a detailed presentation of the middleware packages SIONlib and 

E10. The focus of the latter two packages, that lay on top of BeeGFS, is the optimisation of 

I/O for task-local and collective I/O, respectively. 

The different sections of this document give a short introduction about the basic features of 

the software packages and describe the developments that have been completed so far in 

the course of the DEEP-ER project. 
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1 Introduction 
Scalable I/O is a challenging task in current HPC systems. For an increasing number of 

applications access to fast and reliable I/O systems becomes critical. The performance 

improvements in HPC for the last generations of supercomputers strongly favoured 

computation over I/O capabilities. This trend will cause I/O to become a major limiting factor 

for the scalability of Exascale systems. 

In the DEEP-ER project this problem is addressed on different levels. As a fundamental layer 

the hardware architecture (WP3) provides storage that is local to the compute nodes 

(NVMe). With a constant ratio between the number of I/O units and computing power, this 

new system allows to scale to large systems. The BeeGFS parallel filesystem makes this 

scalable architecture available for the layers above it by providing the concept of cache 

domains. 

In addition, WP4 has been working on the packages SIONlib and E10, which are developed 

from the application perspective to ease the use of this new architecture. Depending on the 

I/O strategy, applications can use one of the libraries or both, in order to maximise the 

benefits of the DEEP-ER concepts. This minimises the need for code intrusion in the 

applications while still using the advances of the underlying layers. 

While deliverable D4.2 focused on the APIs that are accessible to the applications, the 

present deliverable describes the implementation of the APIs themselves. 
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2 BeeGFS 

The connection between the storage devices and the applications is provided by the 

filesystem. In the DEEP-ER project BeeGFS constitutes the parallel filesystem for the I/O 

middleware (SIONlib or E10) and also gives direct access to the applications. See the 

following overview about the different parts of the BeeGFS development in the context to the 

DEEP-ER project. 

2.1 Intermediate layer 

The intermediate layer is implemented as designed in the deliverable 4.1 and shown in 

Figure 2.1-1. The global filesystem is a common BeeGFS installation. The servers use 

spinning hard-drives to store the file content and SSDs to store the metadata of the files. The 

cache filesystem is implemented by BeeOND and the files, including the metadata, are 

stored on the NVMe devices. BeeOND is a startup script which supports dynamic and 

flexible creation of a BeeGFS filesystem. It allows the creation of a BeeGFS instance during 

the placement of a job in the cluster by its queuing system. In the DEEP-ER project a cache 

domain consists of one node. The cache FS is created during the start up. This system has 

been deployed on the DEEP Cluster and on the DEEP-ER SDV. 

 
Figure 2.1-1: Cache architecture 
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2.2 I/O API extension 

2.2.1 BeeGFS API 

The BeeGFS Striping API allows creating files in the filesystem with a data stripe 

configuration that matches the I/O requirements of the application. The application can define 

how many targets, which stripe size and which stripe pattern (RAID0 or Buddy Mirroring) 

should be used. For example, the application can select more targets for big files and fewer 

targets for smaller files. This helps to optimize the I/O throughput of the applications. The API 

allows the application to query the stripe configuration and the used targets of a file from 

BeeGFS. It is also possible to check if a filesystem path is actually inside a BeeGFS 

filesystem or not. 

2.2.2 Cache API 

The cache API is implemented as specified in the deliverable 4.2. During the development of 

WP5 additional requirements were added to its specifications, leading to an extension of the 

API. All requirements were implemented and tested. Initially BeeGFS provided a 

synchronous API, which was later extended to work asynchronously. This helped the 

developers to integrate the cache API into their applications and test the functionality at an 

early stage in the project. The implementation of the synchronous version of the API could be 

finished earlier than the asynchronous version; this allowed a decoupling between the 

implementation of asynchronous I/O in BeeGFS as well as the integration into applications. 

The application developers can use the synchronous API with the same interfaces as the 

asynchronous API. To change from the synchronous API to the asynchronous version the 

application only needs to be re-linked with the new version of the library. 

2.2.2.1 Cache API feature requests from the application developers 

During the prototyping phase several telephone conferences and meetings with WP5 and 

WP6 took place to collect several additional requirements from the application developers. 

This lead to extra implementations and testing of the new features: 

¶ The flush and the prefetch functions support a ñfollow symlinkò feature in the new 

specification. Using a flag, the files and directories behind the symlinks are copied to 

the cache filesystem or the global filesystem. To avoid infinite recursion in the 

filesystem structure the number of symlinks to follow in a chain is limited to 20. 

¶ CRC checksum calculation is supported during the flush and prefetch function. The 

cyclic redundancy check (CRC) code is a commonly used and highly efficient method 

to calculate checksums for streamed data. The calculation during the flush or prefetch 

avoids additional reads from the filesystem to calculate the CRC checksum of files by 

the user application. 

¶ Two functions were implement and tested giving more control to the asynchronous 

flush and the prefetch operations. The API provides a function to check if the flush of 

a file or directory is ongoing, and a function to stop a running flush or prefetch. 

Adaptions to the original API allowed fulfilling all application requirements. 
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2.2.2.2 Cache API implementation details 

The synchronous version of the API implements the full function set of the specification and 

the requested API features ñfollow symlinkò and ñcalculate CRC checksumò. The processing 

of the functions is done in the context of the thread that called the API function. 

The asynchronous version of the API implements all functions of the synchronous API and in 

addition implements the requested ñcontrol functionsò for the asynchronous flush or prefetch. 

All prefetch and flush operations are executed asynchronously in this version of the API. The 

asynchronous implementation allows improving the performance compared to the 

synchronous version in several ways. First the flush or prefetch functions are offloaded to a 

cache daemon, which is running on the same node in the asynchronous version. The 

offloading affects all prefetch or flush functions - the ñfollow symlinkò, the ñcalculate CRC 

checksumò and the ñbyte rangeò version. 

A second performance improvement is implemented by splitting big files into byte range 

flushes or prefetches to use multiple threads. The number of worker threads of the cache 

daemon is configurable, because it has to be adjusted to the cluster environment. A thread 

count which is too high could have a negative impact on the cluster jobs on the node and if 

the thread count is to low the cluster jobs of the node have longer I/O waits. The minimal size 

of a file before it should be split is configurable as well. This size is also used as byte range 

size for the range flushes or prefetches, so big files are split multiple times for range flushes 

or prefetches. 

All asynchronous requests are processed by the cache daemon in a first in - first out queue. 

Lookup tables are used to get an efficient access to the requests in the different stages. The 

failed requests, the CRC checksums of finished requests and requests that currently 

processed are organised in different lookup tables. Errors during the asynchronous flushes 

1. Asynchronous 
API call

1. Wait()

4. Process work

Synchronous API call
(executed by the thread 

of the caller process)

Application workflow

User application

I/0 subsystem

DEEP-ER cache 
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DEEP-ER cache API

Messaging 
facility

Cache file system Global file system

DEEP-ER cache daemon

Worker
threads

Messaging 
facility

Lookup list 
of requests 

in processing

2. Add 
request 
to FIFO

3.a Worker 
take request 
from FIFO

2.a 
Check 

list

3.b Add 
request 
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FIFO with 
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request 
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Figure 2.2-1: Asynchronous API architecture 



D4.4  I/O software packages 

11 

DEEP-ER - 610476  04.05.2017 

and prefetches are reported to the API by the wait function. The architecture and the 

workflow of the synchronous/asynchronous operations are shown in Figure 2.2-1. 

A code example for the usage of the cache API is given in Figure 2.2-2. 

// create the directory on c ache FS  

f uncError = deeper_cache_mkdir(dir.c_str(), S_IRWXU | S_IRGRP | 

S_IROTH);  

if(funcError == DEEPER_RETVAL_ERROR)  

{  

   // error handling  

}  

 

// prefetch the file from global FS to the cache FS  

funcError = deep er_cache_prefetch(file.c_str(), 

DEEPER_PREFETCH_NONE); 

if(funcError == DEEPER_RETVAL_ERROR)  

{  

   // error handling  

}  

 

é // do something during the prefetch 

 

// wait until the prefetch is finished  

funcError = deeper_cache_prefetch_wait(file.c_str(), 

DEEPER_PREFETCH_NONE); 

if(funcError == DEEPER_RETVAL_ERROR) 

{  

   // error handling  

}  

 

// open file in the cache FS  

int cacheFD = deeper_cache_open(file.c_str(), O_RDWR, S_IRWXU | 

S_IRGRP | S_IROTH , DEEPER_OPEN_NONE); 

if(cacheFD == - 1)  

{  

   // error handling  

}  

 

é // modify the file in the cache FS by POSIX operations  

 

// close file in the cache FS  

funcError = deeper_cache_close(cacheFD);  

if(funcError == DEEPER_RETVAL_ERROR)  

{  

   // error handling  

}  

 

// flush the file from the cache FS to the global FS and wait until 

// the flush is finished  
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funcE rror = deeper_cache_flush(file.c_str(), DEEPER_FLUSH_WAIT);  

if(funcError == DEEPER_RETVAL_ERROR)  

{  

   // error handling  

}  

Figure 2.2-2: Code example of the asynchronous cache API. 

2.3 BeeGFS on the DEEP Booster nodes 

In the DEEP-ER project the Intel Knights Corner (KNC)-based Booster constructed within 

DEEP has been used as software development and test platform. Porting BeeGFS to KNC 

involved changes in the beegfs-client code. The Intel Knights Landing (KNL) servers, that 

became available just recently and have been integrated in the DEEP-ER SDV, is different to 

its predecessor in that every BeeGFS package can be installed without any additional 

adaptation. The first preliminary tests of all BeeGFS components including the BeeOND 

scripts have been successfully done and everything works as expected. 

2.4 Resiliency and reliability 

A data mirroring system has been implemented, featuring a built-in high availability 

functionality in order to achieve better resiliency and reliability. Using this system, the data is 

still accessible to the cluster even if a node that contains a mirrored file should fail. Mirroring 

can be enabled on a per-directory basis, so specially selected data in the filesystem can be 

mirrored. Data mirroring on storage targets is based on so-called buddy groups, in general 

consisting of two targets, a primary target and a secondary target. They should be located on 

different physical servers and should be of the same size. It is not required to fulfil both 

requirements, but this configuration is recommended to get an optimal performance. A target 

that belongs to a buddy group is still available to store unmirrored data as well, making it 

possible to have a filesystem that only mirrors a certain subset of the data. Figure 2.4-1 

shows how 2 mirrored files (yellow, red) and one unmirrored file (green) is striped across the 

targets when mirroring is enabled. Modifying operations will always be sent to the primary 

target first, which takes care of the mirroring process. File contents are mirrored 

synchronously, i.e. the client operation completes after both copies of the data were 

transferred to the servers. If, for some reason, the primary storage target of a buddy group is 

unreachable for the system, a failover to the secondary target will be issued. In this case, the 

secondary target will become primary target from that point on. 

To avoid split-brain situations (e.g. a disconnection of about 50% of the whole system could 

trigger the two ï now separated ï systems to run independently from each other) failover 

information has to be propagated to every component of the system, before the actual 

failover is performed. The failover does not happen immediately and certain timeouts need to 

be maintained.  

Originally, we studied the possibility to implement asynchronous data triplication as an 

additional step. However, several unforeseen issues, e.g. problems with the network 

protocol, and changes in the API requirements, forced us to redefine our priorities. Since for 

the applications the implemented replication feature is already a major enhancement for 

resiliency and reliability and they do not expect needing further levels or replication within the 

DEEP-ER project, we decided to set a low priority for triplication. 
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Figure 2.4-1: File Striping with BuddyMirrored and unmirrored files 

2.5 Compression 

Modern local file systems, such as Zettabyte File System (ZFS), support transparent 

compression and can be used as backend for BeeGFS. We successfully tested this feature 

and evaluated its interaction with BeeGFS. As a result, we can fully recommend using the 

underlying filesystemôs compression if it is required. 

2.6 Data placement 

BeeGFS allows defining a set of preferred storage targets and metadata servers to store 

files. These policies can be set for every BeeGFS mount as part of the client moduleôs 

configuration. The data placement policy can be defined for every BeeGFS mount point. It is 

possible to mount the same BeeGFS multiple times on the same node. Every mount could 

be configured with a different policy. 

2.7 Monitoring and statistics of BeeGFS 

During the project BeeGFS was extended with additional statistics to monitor the filesystem. 

The gathered data can be broken down to individual clients or users. This can be helpful to 

identify cluster jobs which are heavily using the filesystem or have bad I/O patterns. In 

addition, information gathered from the monitoring system can be used to identify 

performance-critical parts in the I/O subsystem of the applications. 

2.7.1 Command line tool beegfs-ctl 

The beegfs - ctl  is a command line tool which provides statistics and monitoring 

information of BeeGFS as parsable output. The integration of the newly-implemented 

statistics in beegfs-ctl is covered below. 



D4.4  I/O software packages 

14 

DEEP-ER - 610476  04.05.2017 

The storage statistics on a per-user basis can be queried with the beegfs - ctl  command as 

follows: 

beegfs - ctl -- userstats -- nodetype=storage -- interval=1  

 
Figure 2.7-1: Output of beegfs-ctl which contains storage statistics of users 

The metadata statistics on a per-user basis can be queried with the beegfs - ctl  command 

as follows: 

beegfs - ctl -- userstats -- nodetype=metadata -- interval=1  

 
Figure 2.7-2: Output of beegfs-ctl which contains metadata statistics of users 

The storage statistics on a per-client basis can be queried with the beegfs - ctl  command 

as follows: 

beegfs - ctl -- clientstats -- nodetype=storage -- interval=1  

 
Figure 2.7-3: Output of beegfs-ctl which contains storage statistics of beegfs-clients 

The metadata statistics on a per-client basis can be queried with the beegfs - ctl  command 

as follows: 

beegfs - ctl -- clientstats -- nodetype=metadata -- interval=1  

 
Figure 2.7-4: Output of beegfs-ctl which contains metadata statistics of beegfs-clients 

In the figures Figure 2.7-1 to Figure 2.7-4 the output of the beegfs - ctl  shows some 

statistics about the I/O operations. The first row (Sum:) of every interval shows a sum of all 
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operations which was done by all the user/client during the interval. The first column contains 

the UID/user name or IP-address/hostname of the I/O producer. The second column ([sum]) 

shows the sum of all operations which was done by a user/client. All following columns 

contain the number of operations of a special I/O operation. The monitoring system counts 

around 60 different metadata and storage operations. The following I/O operations happened 

in the examples: 

¶ close: close file operation 

¶ flockRg: byte range file lock (flock) 

¶ getFSize: get local file size 

¶ MiB-rd/s: read throughput in mebibytes per second 

¶ MiB-wr/s: write throughput in mebibytes per second 

¶ open: open file operation 

¶ ops-rd: read operations 

¶ ops-wr: write operations 

¶ revalLI: revalidate intent operation, not directly triggered by the user 

¶ sAttr: set file attribute 

¶ stat: stat operation on a file 

2.7.2 Webserver beegfs-admon 

The beegfs-admon is a webserver that provides statistics and monitoring information. This 

data, and the information provided in the previous section, can be requested by using HTTP 

GET and POST requests. The beegfs-admon packages also contain a platform independent 

Java GUI to visualize the information. An example of the Java GUI with a metadata client 

statistics view and storage client statistics view are shown in Figure 2.7-5. 

 
Figure 2.7-5: Client metadata and storage statistics in the admon GUI 
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2.8 Open Source 

BeeGFS is released under an OpenSource license since the 23rd of February 2016. The 

source code is available on our website http://www.beegfs.com/content/source-code/. 

2.9 Extoll Support 

In the design of the I/O solution, the TCP over Extoll implementation constitutes the 

communication layer of BeeGFS. During the test on the DEEP-ER SDV we recognized a 

good I/O performance for 16 and fewer TCP streams. However, the throughput drops to less 

than 50 MByte/s in tests with more TCP streams. After several tests and benchmarks, this 

issue could be tracked down to limitations of TCP over Extoll. Although, the TCP over Extoll 

performance will be investigated and the implementation will be enhanced by Extoll, FHG-

ITWM will implement support of the native Extoll protocol in BeeGFS to resolve the issues 

with TCP over Extoll and to achieve the maximum performance of Extoll. Originally, we 

expected that TCP over Extoll could provide nearly the full performance of the hardware, so 

this additional development work was not planned initially in the project and hence effects the 

distribution of the available resources. However, the high impact on the performance of the 

system justifies the change in priorities to maximize the projects benefits, since it is critical for 

achieving the projectôs main goals. 

2.10 BeeGFS Summary and Conclusions 

The BeeGFS approach in DEEP-ER addresses the problem of concurrent I/O on the storage 

system in common cluster environments. The cache filesystems help to partition the I/O and 

relieve the global storage system of the cluster. The applications can use the new filesystem 

architecture through the developed APIs. Exascale clusters will need a bigger storage 

system, what increases the probability that a part of the storage system fails. This topic is 

addressed by the implemented mirroring feature of BeeGFS. The new I/O statistics of the 

monitoring system help the application developers and the cluster administrators to identify 

performance issues. 
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3 SIONlib 

3.1 Overview 

One of the major goals of SIONlib is to provide support for parallel task-local I/O at large 

scale. In this section we will first cover the general approaches to optimise task-local I/O on 

large scale and describe the applied approaches of SIONlib to avoid different bottlenecks 

that occur when running traditional task-local I/O at large scale. The following part of this 

section will then cover the new developments in SIONlib done within the DEEP-ER project. 

SIONlib is designed to speedup task-local I/O and to achieve this goal one of the key 

elements is the reduction of the number of files. In task-local I/O every task writes its data to 

its own file. For large task numbers this concept results in a correspondingly large file count. 

This in turn causes significant load on meta-data servers and introduces delays of several 

minutes in the program execution and hence limits scalability. 

To avoid this bottleneck, SIONlib maps the task-local I/O of the application tasks to chunks of 

a shared file container, which reduces the number of files significantly. However, using fewer 

files than tasks results in shared files accessed concurrently by the application tasks. This 

can cause contention when file access is not coordinated. One point where serialisation in 

shared files access occurs is the concurrent access to single file system blocks from multiple 

tasks. A file system block is manipulated in ñread, modify, writeò cycles and can only be 

handled by a single task at a time. In order to prevent this serialisation SIONlib aligns access 

in the shared file to the file system block size, therefore ensuring exclusive access to a file 

system block by only one task. 

In a similar way, as many files in a single directory cause meta-data contention, further 

scaling of task-local I/O to shared files leads to contention in the file meta-data management. 

Indeed, changes to file meta-data (e.g. i-node modifications) are typically performed by a 

single component of the file system. SIONlib addresses this bottleneck by using multiple files 

while keeping the number of files small compared to the number of tasks. 

In the following we describe the developments of SIONlib that were done in the DEEP-ER 

project. The structure follows the DoW. 

¶ Integration of an additional parallel API driver layer for OmpSs. This will extend the 

list of currently supported parallel paradigms (MPI, OMP, hybrid). 

o An analysis of this subtask by the involved groups from WP4 and WP5 

showed that the current functionality of SIONlib already covers the described 

use case. One possible approach is the use of SIONlibôs key-value mode as 

described in section 3.2. This feature has been developed recently and was 

not available at the beginning of the project. In the desired use case, SIONlib 

operations will be performed by only one OmpSs task at a time, whereas the 

SIONlib file handle will be shared by all tasks, which perform I/O on the 

SIONlib file container. Accesses to the file will then be harmonized by 

coordinating the access to the shared file handle inside OmpSs.  

¶ Adaption of the existing implementation for MPI, OMP and hybrid to the MPI-

implementations of DEEP-ER parallel environment. 

o Large amounts of the code have been refactored in the course of the 

DEEP-ER project to support development and integration of new features (see 

section 3.3). In this way, the new buddy checkpointing feature (see section 
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3.4) could be implemented on top of existing SIONlib software layers. Beyond 

this additional functionality no further technical changes of the interfaces and 

implementation were needed to adapt SIONlib to the DEEP-ER parallel 

environment. 

¶ Enhancement of the SIONlib meta-data structure and the functionality of the 

underlying parallel software layer to support time-varying task-mappings. 

o The aforementioned key-value mode of SIONlib (see section 3.2) is designed 

to handle time-varying task-mappings since it allows for a separation between 

the tasks directly involved in the I/O operations and those that are created 

only for computation. This feature can be used without losing the relation 

between those different tasks. 

¶ Enhancement of SIONlib to support buffering of task-local data in memory caches on 

compute- or I/O-elements. These would allow a deferred or asynchronous parallel 

I/O. 

o The additional features of SIONlib developed by WP5 to support the SCR 

multi-level checkpointing library enable using asynchronous I/O. This is also 

the preferred way to exploit the asynchronous I/O feature of BeeGFS from 

SIONlib. 

¶ Adapt the internal testing and benchmarking features to cover the new features. 

o The development of the new features for the project is test-driven. The 

SIONlib distribution package contains a set of parallel and serial tests for each 

of the new features, which allows verifying the correct execution of SIONlib 

during the installation process. This means testing is at the core of the 

development. The new features will be continuously benchmarked during and 

until the end of the project. 

3.2 Key-value mode 

The key-value mode in SIONlib allows correlating keys with payload data. Therefore SIONlib 

provides special write and read operations, which need a key as additional parameter. The 

data of write operations is then internally assigned to the according key. In this way data 

chunks written by one task can be separated into different sub-chunks, each with an 

individual key. This scheme can be used to separate data written by different threads of one 

process using the thread index as key. 

Files that use the key-value mode can be exclusively accessed using this feature. The 

reason is that meta-data for the key-value is stored in the data sections of the file, which 

typically only contain user data for non-key-value opened SIONlib files. The benefit of this 

design decision is that SIONlib can handle key-value meta-data on a task-local level and 

does not have to manage this meta-data globally, with resulting global collective 

communication operations. Furthermore, this approach minimises the changes needed in 

meta-data handling and avoids changes in the file layout of the SIONlib file container. 

In general, the implementation is not designed to replace a real key-value store or a 

database; instead it is specifically designed to handle the problem of time-varying task-

mappings. Since the implementation is transparent for the user it can always be optimised 

toward different use cases without the need for significant changes in the user code. The 

preferred strategy when writing in key-value mode can be chosen in the open mode string, 

e.g. 



D4.4  I/O software packages 

19 

DEEP-ER - 610476  04.05.2017 

sion_paropen_mpi("file.sion", "bw,keyval=inline", é); 

Without explicit choice of the key-value mode the default is selected, which currently is the 

inline  mode. 

There are new API calls for writing and reading from/to key-value mode files, since the key is 

needed as additional argument. The two basic commands to make use of keys are: 

size_t sion_fwrite_key(  const void *data,  

 uint64_t key,  

 size_t size,  

 size_t nit ems,  

 int sid);  

and 

size_t sion_fread_key(  void *data,  

 uint64_t key,  

 size_t size,  

 size_t nitems,  

 int sid);  

These write to and read from a file with key-value mode, respectively. 

The data layout for the current key-value implementation (called ñinlineò) adds a header to 

each write request containing the key and the size. So a single write call writes this meta-

data and the actual data. Since the user is in part detached from the underlying file layout, 

the behaviour of write and read calls are changed: the size of every I/O call in non-key-value 

mode has to adhere the maximum of chunksize  bytes. This limitation is dropped when key-

value mode is used, so the size can be chosen freely. Although this might sacrifice write 

performance when used unintentionally, removing this limitation proved to be very 

convenient and may be considered for regular SIONlib write calls as well in future versions. 

For more in-depth information on the key-value API we refer to the documentation on the 

SIONlib website [SIONlib website]. 

3.3 Redesign and restructuring 

In order to simplify the development of new features for the project, SIONlibôs internal 

structure was redesigned. This significantly reduced the amount of work needed to develop 

and test the buddy checkpointing feature. 

The original and revised application layouts are shown in Figure 3.3-1 and Figure 3.3-2, 

respectively. 
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Figure 3.3-1: Original software layout of SIONlib 

 
Figure 3.3-2: Revised software layout of SIONlib 

In Figure 3.3-2 the ANSI C or POSIX-I/O layer provides the interface between SIONlib and 

the file system. The serial layer uses this interface to provide all the functionalities and 

algorithms required by the node to efficiently utilise the underlying file system API. For pre- or 

post-processing purposes this serial layer can be access directly from serial tools using the 

serial API. The parallel layer coordinates file access implementing only the parallel 

components of the algorithms and then calling the underlying serial layer. 

Up to this layer the structure remained unchanged. The first API on top of the parallel layer 

was originally the MPI API. Over time the OpenMP and the hybrid API were added as a 

response to application demands and, in the case of tools (like Score-P or Scalasca), a 

generic API was added for more flexibility. This requirement comes from the fact that during 

start up such tools usually do not have sufficient knowledge about the communication layer 

that is used by the application and they need generic calls. This was the status before the 

project. 

With the DEEP-ER developments all parallel APIs (MPI, OpenMP and hybrid) now use the 

generic API as opposed to the former layout. Since SIONlib was originally primarily designed 

for MPI there was much redundant functionality implemented for the other APIs as they were 

added. With the new structure the different parallel APIs only implement a small set of 

functions specific for this interface. These functions fulfil generic patterns, e.g. gathering data 

from all tasks and executing a command like writing the data to disk. The generic API uses 

these generic functions as building blocks to implement the generic parallel I/O algorithms. 
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This separation of communication and functionality has two major advantages. First of all it 

provides a single module to implement new functionalities, like buddy checkpointing which is 

described in the following section. A similar advantage also holds for the opposite direction: 

new communication layers only need to implement the limited set of communication 

primitives. There is no need for additional algorithms to be implemented for a new 

communication layer since the algorithms are based on the communication primitives. 

3.4 Buddy checkpointing 

3.4.1 Basic concepts 

The concept of buddy checkpointing is driven by resiliency. While enabling highly scalable 

I/O, local storage also causes data loss in case a node fails. Since the aggregated 

performance of local storage is assumed to be significantly better than that of the global file 

system, parts of the work can be traded to add redundancy to the local layer while preserving 

high efficiency. 

One obvious way to implement redundancy is to copy the local data to the local storage of a 

remote node. In this context the associated node is referred to as óbuddy nodeô. 

 
Figure 3.4-1: Normal restart from local data (left) and restart from local data using buddy checkpointing 
after node failure (right). 

Figure 3.4-1 shows the data flow for different restart conditions. For the case where local 

checkpointing data is only used to speed up the restart process each cache domain provides 

the data for the local processes. Since the local storage is connected to the according nodes 

a node failure also causes the local storage to be inaccessible. To solve this problem we 

request the copied data from the buddy node. This buddy node will then provide the data 

after it reads its own local data. In order to transport the data SIONlib uses the 

communication layer of the application, e.g. MPI. 

3.4.2 Design 

With the new internal structure, buddy checkpointing could be integrated in the parallel layer 

without the need for different implementations for different APIs. Figure 3.4-2 shows the 

different components where the buddy checkpointing feature changes former behaviour. 
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Figure 3.4-2: Buddy checkpointing integration 

Internally the code now branches and runs different methods depending on whether buddy 

checkpointing is enabled or not. The relevant code parts are implemented in a new module, 

which makes use of the communication layer of the application. It is a general design 

decision of SIONlib to use the communication layer of the application in order to avoid 

additional dependencies. 

In order to enable buddy checkpointing applications need to pass a new option ñbuddy=Nò to 

the open option string. This option defines the level of buddy checkpointing and in case it is 

omitted it is set to the default value of 1 (meaning that one additional copy of the data is 

kept). The level equals the number of redundant copies of the data written, so a level of 2 

means the data exists in the form it usually would for writing with SIONlib and two copies are 

present on disjoint local storages. Since there is no benefit in writing buddy data to the same 

node twice the number of cache domains represents a natural limit. Although there is no 

limitation in SIONlib, the performance penalty will usually determine a reasonable limit for the 

buddy level, which is significantly smaller than the number of cache domains. The failure of 

any cache domain during the application execution can considered significantly higher than 

the simultaneous failure of two cache domains. Hence, for most use cases the default level 

of 1 will be an good choice. 

3.4.3 Communication scheme 

The implementation of buddy checkpointing with the generic primitives eases the support for 

different communication layers and the maintenance of the code and tests. As a result the 

algorithms are also not formulated in the scope of e.g. MPI but with the generic primitives, 

which can be implemented for MPI as well as for OpenMP or hybrid applications. This leads 

to communication schemes, which incorporate the features of the potentially different 

underlying parallel APIs. 

In general SIONlib supports different I/O strategies that were added over time, as there was 

demand from applications. The first basic scenario, which SIONlib was optimised for, is 

checkpointing a large amount of data of many tasks. For this scenario SIONlib only uses 

collective calls for open and close routines while all read and write routines are individual 

without any communication. Avoiding unnecessary communication is one of the optimisation 

strategies of SIONlib. The relevant bottlenecks change for a scenario where a large number 

of tasks are involved in I/O but only a small amount of data is written. In this case file system 

block alignment results in potentially large amounts of allocated but unused disk space. 

Therefore, SIONlib also supports a collective mode which needs to communicate during read 
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or write operations but can result in significantly denser files and better bandwidths, since 

less empty data needs to be read or written. 

Since buddy checkpointing naturally involves communication one important feature is that it 

can only be used in the collective mode. In order to collect the data correctly different groups 

are formed to define different roles during buddy checkpointing. 

 

 
Figure 3.4-3: Communication groups 

Figure 3.4-3 shows one example of possible communication groups for three cache domains 

with a different number of tasks. Inside these groups the tasks fulfil different roles. In the 

middle cache domain (LGrp1), task 0 (T0) acts as collector in the red group while taking the 

role of a sender in the green group. It is always the first task in a local group that collects the 

data of the other group members, both for local writes and for remote writes from the buddy 

group. For implementation reasons the remaining tasks in a local group are not excluded 

from the communication group, but are assigned an according role. This prevents them from 

sending their data not only to the first task of the buddy node but also to the first task in their 

own node. This is indicated with the dashed lines for both groups in the figure. 

With these groups well defined SIONlib transfers the data between them. The algorithm for 

data transfer takes into account that a task may have different roles. In this way the data 

transfer becomes a multi-step process depending on different factors, like whether the 

number of cache domains is even or odd, and which level of buddy checkpointing is 

executed. 

The implementation does not use the buddy nodes explicitly but a mapping that describes 

the buddy relation. This allows different levels of buddy checkpointing to reuse the algorithm 

that handles different roles. 

3.4.4 Comparison with native buddy checkpointing in SCR 

As part of the Co-design between WP5 and WP4, the buddy checkpointing functionality in 

SIONlib was identified as a good way to make use of the strengths of both, the scalable 

checkpoint / restart system (SCR) and SIONlib. Where SCR shines with its resiliency 

features, its task-local I/O strategy is the ideal candidate to be optimised with SIONlib. 
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The most obvious differences in I/O behaviour between pure SCR and SIONlib are how the 

data is read and the number of operations involved in the checkpointing/restart process. 

Since SCR has no control over the data during the write and read calls, it has to first copy all 

missing data to local storage in the buddy nodes. In Figure 3.4-4 this behaviour is depicted 

for the read and write case in the left column. The operations are labelled ñWò and ñRò for 

write and read respectively, and the same numbers mark processes that can run in parallel. 

The operations coloured in red mark additional operations that SCR does and that SIONlib 

does not have to do. 

 
Figure 3.4-4: Comparison of read and write behaviour of SCR (left) and SIONlib (right) 

First of all we describe the read behaviour. Since node A does not restart with its local data it 

needs to get the data from its buddy node B. In SCR this means copying the data to A from B 

and then reading it from the local storage. This operation needs to be done first; the green 

arrow labelled ñSCRò shows the copying process from B to A and the operations are 

labelled  ñ1ò. With all local data recovered, both nodes can restart from their local data. 

In the case of SIONlib restarting with no local data being available on node A means that the 

data is read on demand. First node B reads from the local storage and then sends the 

requested buddy data to node A. Since the local read operations are serialised and all data 

needs to be read from node B, the number of operations is the same for this node. 

Regarding node A, the difference between the two approaches is that SIONlib directly 

transfers the data from node B into node Aôs memory without the need for additional reads or 

writes to the local storage of this node. 

As indicated by the numbers, the two additional operations could be theoretically executed in 

parallel with the two read operations of node B. 

An analysis of writing buddy checkpoints shows similar result. Since SCR does not handle 

the write calls, it needs to re-read the data written locally to be able to copy it to another 
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node. This adds a read operation to the scheme, which can be avoided by SIONlib. 

Regarding the parallel operations the two schemes also show a similar behaviour as in the 

read case. The reason why the operations ñW2ò and ñW3ò have different numbers is the 

communication pattern, e.g. odd and even nodes changing roles to avoid deadlocks. 

Besides the reduction of I/O operations SIONlib can also reduce the number of local files per 

cache domain and hence also for the checkpoints that are migrated to the global storage. 

One single SIONlib-file per cache domain is expected to be a good choice for the envisioned 

hardware configuration. 

3.4.5 Example 

In Figure 3.4-5 we show a basic example how to write files with SIONlib using buddy 

checkpointing. 

#include <stdlib.h>  

#include <string.h>  

 

#include <mpi.h>  

#include <sion.h>  

 

int main(int argc, char* argv[])  

{  

  int        numFiles = - 1;  

  MPI_Comm   lComm;  

  sion_int64 chunksize = 100;  

  int        fsblksize = - 1;  

  char*      newfname  = NULL;  

  char*      buffer    = NULL;  

  int        sid       = - 1;  

  int        lgroup    = - 1;  

  int        rank      = - 1;  

 

  MPI_Init(&argc, &argv);  

  MPI_Comm_rank(MPI_COMM_WORLD, &rank);  

 

  if (rank < 2) {  

    lgroup = 0;  

  }  

  else {  

    lgroup = 1;  

  }  

 

  MPI_Comm_split(MPI_COMM_WORLD, lgroup , rank, &lC omm);  

  buffer  = (char*)malloc(chunksize);  

 

  memset(buffer, 'A' + rank, chunksize);  

 

  sid = sion_paropen_mpi("simple.sion",  

                         "w ,buddy ",  
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                         &numFiles,  

                         MPI_COMM_WORLD, 

                         &lComm,  

                         &chunksize,  

                         &fsblksize,  

                         &rank,  

                         NULL,  

                         &newfname);  

 

  if (sid >= 0) {  

    sion_ coll_ fwrite(buffer,  

                sizeof (char),  

                chunksize,  

                sid);  

 

    sion_parclose_mpi(sid);  

  }  

  else {  

    fprintf(stderr, "on rank %d: error sid = %d \ n", rank, sid);  

  }  

 

  free(buffer);  

 

  return 0;  

}  

Figure 3.4-5: Basic usage of buddy checkpointing in SIONlib 

In this example we create two local groups. The first two ranks belong to the first group and 

the remaining ranks to the second. If BeeGFS is used to manage the local storage, these 

groups would be chosen according to the BeeGFS cache domains. 

The example given in D4.2 shows the regular writing of SIONlib files. Beyond the creation of 

local groups, the important changes to add buddy checkpointing are: 

¶ numFiles  is set to - 1 which tells SIONlib to use the communicator lComm to create 

I/O groups. These groups should be chosen according to the local storage. 

¶ sion_ coll_ fwrite  is used to write the data since buddy checkpointing involves 

communication with the buddy node in the write process, as described above. 

3.5 Open Source 

SIONlib is release under an Open Source (BSD 3-Clause) license. The source code and 

documentation are available on the SIONlib website [SIONlib website]. 

3.6 SIONlib Summary and Conclusions 

In DEEP-ER, SIONlib provides buddy checkpointing to ease the use of local storage for 

resiliency. As checkpointing is a major use case for SIONlib, the extension to buddy 

checkpointing lets applications take advantage of local storage easily while still using a 

mature and long tested I/O library. This provides a benefit for applications already using 
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SIONlib, since there are no major changes needed to enable buddy checkpoining. On the 

other side, applications which integrate SIONlib mostly for the provided buddy checkpointing 

functionality benefit from the I/O optimisations which are already integrated into SIONlib.  



D4.4  I/O software packages 

28 

DEEP-ER - 610476  04.05.2017 

4 E10 

The Exascale10 description in D4.4 will address the following aspects: 

1. Exascale10 contributions to the DEEP-ER project 

2. Description of the proposed Exascale10 hints extensions for MPI-IO 

3. Description of the Exascale10 architecture and implementation 

4. Integration of Exascale10 within DEEP-ER applications 

5. Exascale10 source code licensing and release 

6. Summary and conclusions 

4.1 Exascale10 Contributions 

Exascale10 contributes to the DEEP-ER project by providing improvements to existing 

collective I/O implementations. The ROMIO middleware (a popular implementation of the 

MPI-IO specifications from Argonne National Laboratory) is used as substrate into which the 

new DEEP-ER hardware enabled functionalities are included, maintaining a familiar, widely 

adopted, I/O interface, minimising the integration effort of the new features into existing and 

future applications. 

An important advantage is the use of the NVMe devices integrated in the nodes of the 

DEEP-ER Prototype. This fast, persistent, cache layer amplifies collective I/O performance, 

and more generally, any I/O operation. The new memory tier in the DEEP-ER Prototype is 

made available to applications through the MPI-IO interface by means of additional hints, 

described in detail in the rest of this document. The new hints rely on the underlying 

Exascale10 code inside ROMIO to efficiently move data to and from the cache layer. 

 

Figure 4.1-1: Exascale10 software stack 

The Exascale10 effort in DEEP-ER is twofold. Firstly, an extension of the Universal File 

System driver in ROMIO (UFS) was developed, providing cache access to any parallel file 

system (e.g. Lustre, GPFS, etc). Secondly, a new BeeGFS driver was developed, taking 

advantage of the native BeeGFS cache APIs to provide the same functionalities of the 
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universal driver. A high level architecture of the software stack just described is shown in 

Figure 4.1-1. 

4.2 Exascale10 Hints Extensions for MPI-IO 

The Exascale10 hints extension for MPI-IO represents the only way users can access the 

DEEP-ER cache layer through MPI-IO. There is currently no additional API, although for the 

future it is planned to move the existing functionalities into a separate Exascale10 

middleware, not relying on any other implementation. 

Follows a list of hints and corresponding description: 

¶ e10_cache : used to enable  (or disable ) access to the cache. If set to enable  

every collective I/O write operation will be directed to the cache. Additionally, the hint 

can be also set to coherent  to provide cache coherency to parallel applications 

accessing the same file. In the coherent mode of operation, every write will acquire a 

lock on the requested file extent. This lock will be released only when data in the 

cache has been made persistent in the global file system. Default value is disable . 

¶ e10_cache_path : used only in the UFS driver to tell the implementation where in 

the local file system the cache file should reside. BeeGFS does not need this hint 

since the cache layer is completely transparent to the user. 

¶ e10_cache_flush_flag : used to tell the implementation when the data in the 

cache should be moved to the global file system. If set to flush_immediate  will 

force the implementation to flush the data in the cache immediately after it has been 

written. If set to flush_onclose  will tell the implementation to start the flush of the 

data in the cache when the file is closed. If set to flush_none  will tell the 

implementation to skip the flush of the data in the cache. Default value is 

flush_immediate . 

¶ e10_cache_discard_flag : used to tell the implementation whether a file should 

be removed from the cache (enable ) or not (disable ) when it is closed. Default 

value is enable . 

¶ e10_cach e_thread : used to tell the implementation how many synchronisation 

threads should be used to flush the data from the cache to the global file system. 

Default value is 1. 

The described hints take advantage of the UFS and BeeGFS driver implementations 

described in the following sections. 

4.3 Exascale10 Architecture 

The cache synchronisation task in the Exascale10 implementation of the UFS driver is 

delegated to a separate thread pool, created when the file is opened and destroyed when the 

file is closed. Communication between the main thread of the program and the 

synchronisation threads in the pool is provided through dedicated set of APIs and queues.  
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Synchronisation threads and queues are modelled using an object-oriented approach1 and 

described by the following data structures and APIs in the UFS driver: 

¶ ADIOI_Sync_req_t : data structure describing a synchronisation request used by 

the synchronisation thread to read data back from the cache and copy it to the global 

file system. The corresponding APIs provided to the threads are: 

o ADIOI_Sync_req_init : used by the main thread to create a new 

synchronisation request; 

o ADIOI_Sync_req_fini : used by the main thread to destroy a 

synchronisation request that has completed; 

o ADIOI_Sync_req_init_from : used by the main thread to create a new 

synchronisation request starting from an existing one; 

o ADIOI_Sync_req_get_type : used by the synchronisation thread to get the 

type of request, either ADIOI_THREAD_SYNC or ADIOI_THREAD_SHUTDOWN; 

o ADIOI_Sync_req_{get,s et}_key : used by the synchronisation thread 

and the main thread to get/set the value for a specific key in the request. 

Available keys are: 

Á ADIOI_SYNC_TYPE: the request type (as explained before); 

Á ADIOI_SYNC_OFFSET: the offset of the synchronisation request; 

Á ADIOI_SYNC_DATATYPE: the datatype of the synchronisation request; 

Á ADIOI_SYNC_COUNT: the count for datatypes in the synchronisation 

request; 

Á ADIOI_SYNC_REQ: the MPI_Request  handle for the request; 

Á ADIOI_SYNC_ERR_CODE: the return error_code  for the request; 

Á ADIOI_SYNC_FFLAGS: the cache flush flags for BeeGFS; 

Á ADIOI_SYNC_ALL: all the above. 

¶ ADIOI_Atomic_queue_t : data structure describing the queues used by the 

synchronisation thread and the main thread to communicate. The corresponding APIs 

provided to interact with the queue are: 

o ADIOI_Atomic_queue_init : used by main thread to create a queue; 

o ADIOI_Atomic_queue_fini : used by main thread to destroy a queue; 

o ADIOI_Atomic_queue_push : used by main thread to push a 

ADIOI_Sync_req_t  to the queue; 

o ADIOI_Atom ic_queue_pop : used by synchronisation thread to pop a 

ADIOI_Sync_req_t  from the queue; 

o ADIOI_Atomic_queue_front : used by synchronisation thread to get the 

front ADIOI_Sync_req_t  from the queue; 

o ADIOI_Atomic_queue_back : used by the synchronisation thread to get the 

back ADIOI_Sync_req_t  from the queue; 

o ADIOI_Atomic_queue_size : used to check the number of 

ADIOI_Sync_req_t  inside the queue; 

                                                 

1 The use of an object-oriented approach makes future extractions of the functionalities 

contained inside ROMIO easier and allows for a better recycling of the existing code. 
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o ADIOI_Atomic_queue_empty : used by the synchronisation thread to check 

the status of the queue. 

¶ ADIOI_Sync_thread_t : data structure describing the synchronisation thread inside 

the thread pool. It contains three queues: 1) a pending queue (pen_ ), 2) a submitted 

queue (sub_ ) and 3) a waiting queue (wait_ ). The APIs provided to interact with the 

thread are: 

o ADIOI_Sync_thread_init : used by the main thread to create a new 

synchronisation thread. The corresponding routine starts a new POSIX thread 

with a pointer to ADIOI_Sync_thread_start , which internally pops 

ADIOI_Sync_req_t (s) from the sub_  queue and satisfies them; 

o ADIOI_Sync_thread_fini : used by the main thread to destroy a 

synchronisation thread. The corresponding routine will create a 

ADIOI_Sync_req_t  of type ADIOI_THREAD_SHUTDOWN and push it to the 

sub_  queue; 

o ADIOI_Sync_thread_enqueue : used by the main thread to send 

ADIOI_Sync_req_t (s) to the thread. The corresponding routine will place a 

synchronisation request inside the pen_  queue for later processing; 

o ADIOI_Sync_thread_flush : used by the main thread to signal the thread 

that all the previously sent ADIOI_Sync_req_t (s) should be satisfied. The 

corresponding routine moves all the synchronisation requests from the pen_  

queue to the sub_  queue. A copy of the ADIOI_Sync_req_t (s) is also 

pushed to a wait_  queue for later completion check from the main thread; 

o ADIOI_Sync_thread_wait : used by the main thread to wait for all the 

ADIOI_Sync_req_t (s) sent to a particular thread to complete. The 

corresponding routine invokes MPI_Wait()  on all the MPI_Request (s) 

contained in the ADIOI_Sync_req_t (s) waiting in the wait_  queue. 

For BeeGFS there is no need for a synchronisation thread pool since this is already provided 

by the BeeGFS deamon. Thus the synchronisation thread APIs are modified to exploit the 

BeeGFS cache APIs and renamed using the suffix ADIOI_BEEGFS_Sync_thread_*  in the 

BeeGFS driver. 

4.3.1 ADIOI_Sync_req_t 

The ADIOI_Sync_req_t  data structure contains all the information required by the 

synchronisation thread to move the data in the file between the cache and the global file 

system. The data structure and the APIs used to interact with it are following reported: 

struct  ADIOI_Sync_req {  

    // type of sync thread: ADIOI_THREAD_{SYNC,SHUTDOWN}  

    int  type_;  

    // file extent offset in the file  

    ADIO_Offset off_;  

    // datatype used to write data to the file  

    MPI_Datatype datatype_;  

    // number of datatypes written to the file  

    int  count_;  

    // MPI_Request used with MPI_Wait to check completion status  
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    ADIO_Request *req_;  

    // error code returned by synchronisation routine  

    int  error_code_;  

    // flush flags (BeeGFS only)  

    int  fflags_;  

};  

 

typedef  struct  ADIOI_Sync_req *ADIOI_Sync_req_t;  

int  ADIOI_Sync_req_init(ADIOI_Sync_req_t *r, ...);  

int  ADIOI_Sync_req_init_from(ADIOI_Sync_req_t *r,  

                             ADIOI_Sync_req_t s);  

int  ADIOI_Sync_req_get_type(ADIOI_Sync_req_t r);  

int  ADIOI_Sync_req_get_key(ADIOI_Sync_req_t r, ...);  

int  ADIOI_Sync_req_set_key(ADIOI_Sync_req_t r, ...);  

int  ADIOI_Sync_req_fini(ADIOI_Sync_req_t *r);  

Figure 4.3-1: Synchronisation request object and related APIs 

4.3.2 ADIOI_Sync_thread_t 

The ADIOI_Sync_thread_t  data structure describes the thread(s) inside the 

synchronisation pool. The data structure and the APIs used to interact with it are following 

reported:  

str uct  ADIOI_Sync_thread {  

    // MPI File handle  

    ADIO_File fd_;  

    // pthread id  

    pthread_t tid_;  

    // pending queue  

    ADIOI_Atomic_queue_t pen_;  

    // submitted queue  

    ADIOI_Atomic_queue_t sub_;  

    // waiting queue  

    ADIOI_Atomic_queue_t wait_;  

};  

 

typedef  struct  ADIOI_Sync_thread *ADIOI_Sync_thread_t;  

int  ADIOI_Sync_thread_init(ADIOI_Sync_thread_t *t, ...);  

int  ADIOI_Sync_thread_fini(ADIOI_Sync_thread_t *t);  

void  ADIOI_Sync_thread_enqueue(ADIOI_Sync_thread_t t,  

                               ADIOI_Sync_req_t r);  

void  ADIOI_Sync_thread_flush(ADIOI_Sync_thread_t t);  

void  ADIOI_Sync_thread_wait(ADIOI_Sync_thread_t t);  

Figure 4.3-2: Synchronisation thread and related APIs 

4.3.3 Exascale10 Integration in ROMIO 

Inside the ROMIO UFS driver there is a set of functions that were modified to integrate the 

new cache functionalities: 
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¶ ADIOI_GEN_OpenColl : used by MPI_File_open()  to open a file collectively; 

¶ ADIOI_GEN_WriteStridedColl : used by MPI_File_write_{all,at_all}()  

to write to a shared file collectively; 

¶ ADIOI_GEN_WriteContig : used by ADIOI_GEN_WriteStridedColl()  and any 

other MPI_File_write()  operation to actually write data to the file. In the case of 

collective I/O this is invoked for every round of two phase I/O to move the data 

shuffled among processes to the file; 

¶ ADIOI_GEN_Flush : used by MPI_File_sync()  to flush all the previous writes to 

the file; 

¶ ADIO_Close : used by MPI_File_close()  to close an open file. 

4.3.4 ADIOI_GEN_OpenColl 

Normally this function returns a file handle to every process in the communicator. In the 

Exascale10 implementation this was extended to open an additional file in the cache (using 

the provided user path in e10_cache_path ) and create the thread pool to start later 

synchronisation. The cache file is handled as additional MPI_File  handle pointer (called 

cache_fd ) inside the global file handle. 

4.3.5 ADIOI_GEN_WriteStridedColl 

In order to make sure that writes to the cache will not cause any error due to lack of space, 

local file space is allocated upfront for every collective write operation using a new function 

called ADIOI_Cache_alloc()
2. The function will return an error code if the allocation has 

failed for any reason. The error code from every aggregator is then broadcasted to make 

sure that all the processes have succeeded allocating space. The allocation is done in 

ADIOI_GEN_WriteStridedColl()  since this allows to allocate space only once for every 

collective write operation. If allocation was done in ADIOI_GEN_WriteContig()  it would 

have required to allocate space for every round of two phase I/O, increasing the number of 

system calls introduced by the implementation and the number of global synchronisation 

points. 

4.3.6 ADIOI_GEN_WriteContig 

ADIOI_GEN_WriteCont ig()  writes data to the file in the cache, creates a corresponding 

synchronisation request and sends it to a synchronisation thread in the pool. Following a 

code example of how this is done:  

void ADIOI_GEN_WriteContig(ADIO_File fd, const  void  *buf, int  count,  

                           MPI_Datatype datatype, int  file_ptr_type,  

                           ADIO_Offset offset, ADIO_Status *status,  

                           int  *error_code)  

{  

    int  err;  

    char  *p = ( char  *)buf;  

                                                 
2
 ADIOI_Cache_alloc()  uses the fallocate()  system call to allocate space. This system call 

does not write any data to the file system but only modifies the file system metadata to reserve blocks. 
Nevertheless, this system call only works with EXT4 and XFS file systems. 
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    ADIO_File fh = fd;  

    if  (fd - >cache_fd && fd - >cache_fd - >is_open) {  

        fh = fd - >cache_fd;  

        if  (fd - >hints - >e10_cache_coherent == ADIOI_HINT_ENABLE)  

            ADIOI_WRITE_LOCK(fd, offset, SEEK_SET, len);  

    }  

    ...  

    while  (bytes_xfered < len) {  

        wr_count = len ï bytes_xfered;  

        err = write(fh - >fd_sys, p, wr_count);  

        bytes_xfered += err;  

        p += err;  

    }  

 

    if  (fd - >cache_fd && fd - >cache_fd - >is_open &&  

          fd - >hints - >e10_cache_flush_flag != ADIOI_HINT_FLUSHNONE) {  

        ADIOI_Sync_req_t sub;  

        int  threads, curr_thread, idx;  

        ADIO_Request *r = (ADIO_Request *)  

                             ADIOI_Malloc( sizeof (ADIO_Request));  

        *r = MPI_REQUEST_NULL;  

        threads = fd - >hints - >e10_cache_threads;  

        curr_thread = fd - >thread_curr;  

        idx = curr_thread % threads;  

 

        // init sync req  

        ADIOI_Sync_req_init(&sub, ADIOI_THREAD_SYNC,  

                            offset, datatype, count,  

                            req, 0);  

 

        // enqueue sync re quest to thread  

        ADIOI_Sync_thread_enqueue(fd - >thread_pool[idx], sub);  

 

        if  (fd - >hints - >e10_cache_flush_flag ==  

              ADIOI_HINT_FLUSHIMMEDIATE)  

            ADIOI_Sync_thread_flush(fd - >thread_pool[idx]);  

 

        // select next thread in the pool  

        fd - >thread_curr = (curr_thread + 1) % threads;  

    }  

}  

Figure 4.3-3: For every write a new request is created and submitted to the synchronisation pool 

4.3.7 ADIOI_GEN_Flush 

ADIOI_GEN_Flush()  forces all the data written, and potentially still in the page cache, to 

be flushed to the file system. This function was modified to copy all the additional data in the 

NVM cache to the global file system. Following a code example of how this is done:  
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void  ADIOI_GEN_Flush(ADIO_File fd, int  *error_code)  

{  

    int  err, idx, threads, curr_thread;  

    static  char  myname[] = "ADIOI_GEN_FLUSH";  

  

    if  (fd - >cache_fd == NULL ||  

         (fd - >cache_fd && !fd - >cache_fd - >is_open) ||  

         (fd - >cache_fd && fd - >cache_fd - >is_open &&  

          fd - >hints - >e10_cache_flush_flag == ADIOI_HINT_FLUSHNONE))  

        goto  fn_flush;  

  

    threads = fd - >hints - >e10_cache_threads;  

  

    // Flush all the requests in each thread  

    for  (idx = 0; idx < threads; idx++)  

        ADIOI_Sync_thread_flush(fd - >thread_pool[idx]);  

  

    // Wait for submitted requests to complete  

    for  (idx = 0; idx < threads; idx++)  

        ADIOI_Sync_thread_wait(fd - >thread_pool[idx]);  

 

fn_flush :  

    err = fsync(fd - >fd_sys);  

    ...  

}  

Figure 4.3-4: When the file is flushed all the pending requests are forced to the global file system and 
checked for completion 

If the synchronisation requests were already flushed by the write function, 

ADIOI_Sync_thread_flush()  will do nothing and just return immediately since the pen_  

queue is already empty. 

4.3.8 ADIO_Close 

ADIO_Close()  function closes the MPI_File  handle by invoking the corresponding 

ADIOI_xxx_Close()  routine (where xxx  is replace by the name of the file system driver). 

In this case close function was modified to invoke ADIO_GEN_Flush() , triggering the 

flushing of the data in the cache to the global file system, and call ADIOI_GEN_Close()  on 

the MPI_File  handle of the file in the cache. Following an example of how this is done: 

void  ADIO_Close(ADIO_File fd, int  *error_code)  

{  

    if  (fd - >cache_fd) {  

        if  (fd - >cache_fd - >is_open) {  

            (*(fd - >fns - >ADIOI_xxx_Flush))(fd, error_code);  

            (*(fd - >fns - >ADIOI_xxx_Close))(fd - >cache_fd, error_code);  

             ADIOI_Sync_thread_pool_fini(fd);  

        }  

    }  
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    ...  

}  

Figure 4.3-5: When the file is closed the file is synchronised with the cache and the cache file is closed 

As already said BeeGFS does not need to create any additional thread pool to synchronise 

the data in the cache to the global file system. Therefore, out of the previously described 

functions the following have been re-implemented in the BeeGFS driver: 

¶ ADIOI_BEEGFS_OpenColl  

¶ ADIOI_BEEGFS_WriteContig  

¶ ADIOI_BEEGFS_Flush  

All these functions will use the appropriate BeeGFS APIs for cache handling. 

4.4 Exascale10 Integration 

In the Exascale10 implementation collective write operations can write data to the cache 

instead of the global file system, taking advantage of fast NVMe devices installed in the 

compute nodes of the DEEP-ER Prototype and minimising the impact of the global file 

system performance on the total runtime. Potentially, since the number of NVMe(s) can grow 

with the number of compute nodes, our implementation can scale the write bandwidth 

linearly with the number of available memory devices. Write operations to the global file 

system can be overlapped with computation if the e10_cache_flush_flag  is set to 

flush _immediate . 

The limitation with this approach is that the file cannot be closed until the cache 

synchronisation is completed3. For this reason some changes might be required at the 

application level in order to take advantage of the new MPI-IO hints.  

                                                 

3 If the e10_cache  hint is set to coherent  the file will not be over writable by other 

processes during synchronisation. 
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Figure 4.4-1: Example of standard HPC application workflow (above) and modified E10 workflow (below).  

Figure 4.4-1 graphically shows a typical HPC application workflow. HPC codes perform some 

computation, generate data, and thus write this data to a shared file for later processing. This 

workflow is shown in the upper part of the figure (cache disable). After the compute part is 

completed a shared file is opened, data is written to it and then it is closed, ending the first 

phase of compute and I/O.  

The lower part of the figure (cache enable) displays the workflow modification previously 

mentioned and required to take advantage of the DEEP-ER cache. Now, after the compute 

part is completed, the shared file (and a certain number of local cache files) is opened, data 

is written to the cache and then cache synchronisation (ADIOI_Sync_thread_start ) is 

started together with the next compute phase, without closing the file. Instead, the file is 

closed at the end of the new compute phase, allowing the Exascale10 implementation to 

flush the data meanwhile. Figure 4.4-2 shows a C code example for the modified workflow 

just discussed. 

MPI_Comm comm = MPI_COMM_WORLD; 

MPI_File fh_1, fh_2, fh_3, ...;  

MPI_Status status;  

char  *buf;  

int  count;  

 

// compute #1  

compute(&buf, &count);  

 

// open shared file #1  

MPI_File_open(comm, ñfile_1ò, MPI_MODE_CREATE, &fh_1); 

 

// write data from compute #1 to shared file #1  

MPI_File_write_all(fh_1, buf, count, MPI_CHAR, &status);  














