
 

 

SEVENTH FRAMEWORK PROGRAMME 

 

 

FP7-ICT-2013-10 

 

 

 

DEEP-ER 

 

DEEP Extended Reach 

Grant Agreement Number: 610476 

 

D4.3 

Definition of test cases and patterns 

 

Approved 

 

 

Version:  2.0 

Author(s):  C. Manzano (JUELICH) 

Contributor(s): J. Kreutz (JUELICH), O. Buechner (JUELICH), M. Cintra (Intel), A. Jakobs 

(JUELICH), K. Thust (JUELICH), D. Alvarez (JUELICH), R. Leger (Inria), S. Solbrig (UREG), 

A. Johnson (KULeuven), M. Hanzich (BSC), M. Petschow (ASTRON), J. Romein (ASTRON), 

F. Geier (ParTec), R. Krotz (ParTec) 

Date: 09.12.2015



D4.3  Definition of test cases and patterns 

1 

DEEP-ER - 610476  09.12.2015 

Project and Deliverable Information Sheet 

DEEP-ER Project Project Ref. ˉ:         610476 

Project Title:             DEEP Extended Reach 

Project Web Site:      http://www.deep-er.eu 

Deliverable ID:          D4.3 

Deliverable Nature:  Report 

Deliverable Level: 

PU * 

Contractual Date of Delivery: 

31 / December / 2014 

Actual Date of Delivery: 

17 / December / 2014 

EC Project Officer: Panagiotis Tsarchopoulos 

* - The dissemination level are indicated as follows: PU ï Public, PP ï Restricted to other participants (including 

the Commission Services), RE ï Restricted to a group specified by the consortium (including the Commission 

Services). CO ï Confidential, only for members of the consortium (including the Commission Services). 

Document Control Sheet 

 

Document 

Title:                 Definition of test cases and patterns 

ID:                    D4.3 

Version:           2.0 Status:  Approved 

Available at:     http://www.deep-er.eu 

Software Tool:  Microsoft Word 

File(s):                                                                                          

DEEP-ER_D4.3_Definition_of_test_cases_and_patterns_v2.0-

ECapproved.docx 

 

Authorship 

Written by: C. Manzano (JUELICH) 

Contributors: J. Kreutz (JUELICH), O. Buechner 

(JUELICH), M. Cintra (Intel), A. Jakobs 

(JUELICH), K. Thust (JUELICH), D. 

Alvarez (JUELICH), R. Leger (Inria), S. 

Solbrig (UREG), A. Johnson (KULeuven), 

M. Hanzich (BSC), M. Petschow 

(ASTRON), J. Romein (ASTRON), F. 

Geier (ParTec), R. Krotz (ParTec) 

Reviewed by: A. Emerson (CINECA), E. Suarez 

(JUELICH) 

Approved by: BoP/PMT 

http://www.deep-er.eu/
http://www.deep-er.eu/


D4.3  Definition of test cases and patterns 

2 

DEEP-ER - 610476  09.12.2015 

Document Status Sheet 

Version Date Status Comments 

1.0 17/December/2014 Final version EC submission 

2.0 09/December/2015 Approved EC approved 

  



D4.3  Definition of test cases and patterns 

3 

DEEP-ER - 610476  09.12.2015 

Document Keywords  

Keywords: DEEP-ER, HPC, Exascale, I/O Architecture, Benchmarking 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Copyright notice: 

â 2013-2015 DEEP-ER Consortium Partners. All rights reserved. This document is a project 

document of the DEEP-ER project. All contents are reserved by default and may not be 

disclosed to third parties without the written consent of the DEEP-ER partners, except as 

mandated by the European Commission contract 610476 for reviewing and dissemination 

purposes. 

All trademarks and other rights on third party products mentioned in this document are 

acknowledged as own by the respective holders. 

 

  



D4.3  Definition of test cases and patterns 

4 

DEEP-ER - 610476  09.12.2015 

Table of Contents 

Project and Deliverable Information Sheet ........................................................................ 1 

Document Control Sheet .................................................................................................... 1 

Document Status Sheet ...................................................................................................... 2 

Document Keywords ........................................................................................................... 3 

Table of Contents ................................................................................................................ 4 

List of Figures...................................................................................................................... 6 

List of Tables ....................................................................................................................... 6 

Executive Summary ............................................................................................................ 7 

1 Introduction .................................................................................................................. 8 

2 Test environments ....................................................................................................... 9 

2.1 DEEP Cluster ......................................................................................................................... 9 

2.2 NVM evaluator ...................................................................................................................... 12 

3 Test methodology ...................................................................................................... 14 

4 JUBE ........................................................................................................................... 15 

4.1 Description JUBE ................................................................................................................ 15 

4.2 Further documentation JUBE ............................................................................................ 17 

4.3 Integration JUBE ................................................................................................................. 17 

5 Synthetic benchmarks ............................................................................................... 18 

5.1 IOR ........................................................................................................................................ 18 

5.2 mdtest ................................................................................................................................... 19 

5.3 partest (SIONlib) .................................................................................................................. 20 

5.4 LinkTest ................................................................................................................................ 21 

6 Application-based benchmarks ................................................................................ 25 

6.1 iPiC3D (KULeuven) .............................................................................................................. 25 

6.2 MAXW-DGTD (Inria) ............................................................................................................. 27 

6.3 Radio Astronomy (ASTRON) .............................................................................................. 30 

6.4 Full Waveform Inversion (BSC) .......................................................................................... 32 

6.5 Chroma (UREG) ................................................................................................................... 36 

7 Summary and next steps ........................................................................................... 39 

References ......................................................................................................................... 40 

Annex A - IOR parameters ................................................................................................ 41 

A.1 General IOR parameters ..................................................................................................... 41 

A.2 POSIX-ONLY IOR parameters ............................................................................................ 44 

A.3 MPIIO-ONLY IOR parameters ............................................................................................. 44 

A.4 MPIIO-, HDF5-, AND NCMPI-ONLY IOR parameters ......................................................... 45 

Annex B - mdtest parameters ........................................................................................... 46 

B.1 General mdtest parameters ................................................................................................ 46 

Annex C - partest parameters ........................................................................................... 48 

C.1 File settings partest ............................................................................................................. 48 

C.2 Configuration partest .......................................................................................................... 48 

C.3 Special options partest ....................................................................................................... 48 



D4.3  Definition of test cases and patterns 

5 

DEEP-ER - 610476  09.12.2015 

C.4 partest parameters for Blue Gene/L, Blue Gene/P, Blue Gene/Q ................................... 49 

C.5 MPI-IO, GPFS partest options ............................................................................................ 49 

C.6 Notes on size formats in partest ........................................................................................ 49 

List of Acronyms and Abbreviations ............................................................................... 50 

  



D4.3  Definition of test cases and patterns 

6 

DEEP-ER - 610476  09.12.2015 

List of Figures 

Figure 1: DEEP Cluster and storage concept (note that FhgFS is the old name of 
BeeGFS) ..............................................................................................................................12 

Figure 2: Test machines at JUELICH where the NVMes are mounted ............................13 

Figure 3: Graphical output of the LinkTest communication matrix on the DEEP Cluster
 .............................................................................................................................................23 

Figure 4: Histogram of the LinkTest communication matrix on the DEEP Cluster ........24 

Figure 5: Phases of the iPiC3D algorithm .........................................................................26 

Figure 6: Phases of the MAXW-DGTD algorithm ..............................................................28 

Figure 7: Image processing pipeline used in Radio Astronomy .....................................30 

Figure 8: Main workflow for FWI application ....................................................................33 

Figure 9: Symbolic lattice for QCD (Chroma application) ...............................................36 

Figure 10: Phases of a HMC (Chroma application) ..........................................................37 

 

List of Tables 

Table 1: Characteristics and configuration of DEEP storage system .............................10 

Table 2: BeeGFS services in the DEEP Cluster ................................................................11 

Table 3: IOR relevant parameters ......................................................................................19 

Table 4: IOR test cases ......................................................................................................19 

Table 5: mdtest relevant parameters ................................................................................20 

Table 6: mdtest test cases .................................................................................................20 

Table 7: iPiC3D test cases for 512 mesh cells per process and 128 particles per mesh 
cell (data per iteration) .......................................................................................................27 

Table 8: MAXW-DGTD test cases ......................................................................................29 

Table 9: Radio Astronomy symbols for various parameters ...........................................31 

Table 10: Radio Astronomy I/O and compute requirements of the CSP (Correlation) 
and SDP (Imaging) .............................................................................................................31 

Table 11: Radio Astronomy parameters for two use cases .............................................32 

Table 12: Small, medium, large and Exascale test case for FWI system ........................35 

Table 13: Chroma test cases .............................................................................................37 

Table 14: General IOR parameters ....................................................................................44 

Table 15: POSIX-ONLY IOR parameters ............................................................................44 

Table 16: MPIIO-ONLY IOR parameters ............................................................................44 

Table 17: MPIIO-, HDF5-, AND NCMPI-ONLY IOR parameters .........................................45 

Table 18: General mdtest parameters ...............................................................................46 

 



D4.3  Definition of test cases and patterns 

7 

DEEP-ER - 610476  09.12.2015 

Executive Summary 

This deliverable describes a set of synthetic and application-based benchmarks, which will 

be used to evaluate the DEEP-ER I/O Architecture with respect to I/O performance, 

scalability and integration effort. 

For the description of the application based benchmarks, the I/O requirements defined in 

Deliverable 4.1 [D4.1], together with detailed input from the application developers (WP6), 

have been taken into account. Furthermore, the checkpointing strategy has been considered 

(WP5). 

Besides the specification of the benchmarks, test scenarios and the methodology are 

described. The actual results of the I/O performance measurements and comparison with 

production platforms will be documented at a later stage in Deliverable 4.5. 

  



D4.3  Definition of test cases and patterns 

8 

DEEP-ER - 610476  09.12.2015 

1 Introduction 

As established in the Description of Work (DoW), Task 4.5 pursues the following objectives: 

¶ Specification of a set of synthetic I/O benchmarks for the component-based 

evaluation, a set of DEEP-ER application benchmarks, benchmark parameter sets, 

and test scenarios; 

¶ Integration of the benchmark codes into the JUBE Benchmarking Environment; 

¶ Adaptation of the synthetic benchmarks to use the new I/O layer and APIs; 

¶ Collaborate with Task 6.1 to support the application developers (with performance 

indicators); 

¶ Perform the actual measurements, implementing automatic test procedures; 

¶ Comparison with I/O performance results of JUELICH production systems; 

¶ Analyse, compare and document the results of the measurements. 

This document describes a set of I/O benchmarks and its integration in the JUBE platform, 

fulfilling the first objectives of Task 4.5 and establishing a series of guidelines, which will 

allow the remainder of the proposed goals to be completed successfully. 

The document is structured in 7 main sections: Section 1 comprises the present introduction. 

Section 2 describes the platforms which will be used for the testing and analysis, giving a 

technical overview. Section 3 specifies the benchmarking strategy, which will be followed. 

Section 4 introduces the JUBE Benchmarking Environment and explains how the tool will 

help to achieve the Task 4.5 objectives. Section 5 explains the selected synthetic 

benchmarks and defines a series of specific test cases to be used in the environments of 

Section 2. Section 6 presents the set of applications chosen for benchmarking, gives a 

general outlook of each focusing on the I/O part and, like Section 5, defines the 

corresponding series of test cases. Finally, Section 7 provides a review of the work done and 

gives a description of the future steps. 

The work presented in this document will enable WP4 to perform the actual benchmarking 

measurements, analyse them and extract conclusions. Application developers will also 

benefit from the description done here, since having a better understanding of the 

performance indicators will guide them to make use of the DEEP-ER I/O Architecture more 

efficiently. The same applies for the resiliency software work package, which will use this 

deliverable as a basis for executing checkpointing performance measurements within the 

Task 5.5. 

 

 

  



D4.3  Definition of test cases and patterns 

9 

DEEP-ER - 610476  09.12.2015 

2 Test environments 

Within this section we proceed to explain the test scenarios and methodology that will be 

used for the analysis and evaluation of the DEEP-ER I/O Architecture. 

2.1 DEEP Cluster 

The DEEP Cluster was installed primarily as testing platform for the DEEP project. Equipped 

with Sandy Bridge multicore processors and QDR InfiniBand network, the DEEP Cluster is 

highly flexible and capable of hosting the programming and compiling infrastructure that is 

needed to make use of the novel Cluster-Booster Architecture. While the Booster part is 

being designed and assembled within the DEEP project and is not yet ready, the Cluster can 

already be used for tests and development of the software stack. The Cluster is ideally suited 

for testing the I/O performance of DEEP-ER applications using the Fraunhofer parallel file 

system (BeeGFS), available in the compute nodes under /work. 

During the DEEP-ER project the DEEP Concept will be extended by including new I/O 

elements like, for instance, NAM and NVM. A new Cluster-Booster hardware platform ï the 

DEEP-ER Prototype ï will be built to demonstrate the use of these new memory 

technologies. Further improvements with respect to the DEEP System will be the update to 

new generation processors on the Cluster and Booster side of the machine and the 

simplification of the network configuration. On the software side, new functionality will be 

added to the BeeGFS parallel file system, the SIONlib library will be adapted to the new I/O 

components and the middleware E10 will be integrated in the system. Once the DEEP-ER 

Prototype is available, it will be used for further testing within the Task 4.5. 

2.1.1 System architecture of the DEEP Cluster 

General description 

The DEEP Cluster is a liquid-cooled, energy-efficient, scalable HPC system from the Aurora 

product line produced by Eurotech. Highlights of the Aurora system used for the DEEP 

Cluster compute nodes include the following: 

¶ Nodes: 128x Intel® Xeon® E5 series CPUs (Sandy Bridge). 

- 2 sockets/node. 

- 340 GFLOPs/node. 

- 32GB RAM / node. 

¶ Main memory: 4 TB (aggregate). 

¶ Overall peak performance: 45 TFlops. 

¶ Network Architecture: 60Gbps 3D torus & QDR InfiniBand. 

¶ Compatibility: Full x86 compatibility ï Intel Cluster Ready. 

¶ Operating system: CentOS 6.3. 

For the management and server nodes an external server rack has been assembled with two 

login servers (frontends), six file system servers, a storage system and a Gigabit Ethernet 

switch to set up the administration network. This rack also contains the higher-level high 

speed network switches (8 FDR InfiniBand switches). 

Storage nodes description 



D4.3  Definition of test cases and patterns 

10 

DEEP-ER - 610476  09.12.2015 

The storage part of the JUELICH DEEP Cluster consists of 6 Dell PowerEdge storage 

servers, each one connected to one JBOD with 45 x 2 TB disks via a SAS switch. The 

BeeGFS parallel file system is installed in the storage nodes. The characteristics and 

configuration of the DEEP storage system are described in Table 1: 

DEEP Storage servers: 

6x DELL PowerEdge R520 storage servers (deep-fs01 ï deep-fs06), each with: 

 2x Intel Xeon Quad-Core CPUs (ES-2403) 

 32 GB memory 

 
1x H310 RAID controller with: 

2x 300 GB SAS disk (RAID1) 

Mellanox ConnectX-3 HCA 

 1x SAS port 

SAS switch: 

1x LSI 6140 SAS switch connecting the storage servers with the JBOD: 

 6x SAS cables to connect each storage server to the SAS switch 

 2x SAS cables to connect the SAS switch to the JBOD 

JBOD: 

1x SGI JBOD 2245 with: 

 2x 6 Gb/s SAS 4x wide ports 

 45x 2TB disks: 

4x disks for deep-fs01 and deep-fs02 

20x disks for deep-fs03 and deep-fs04, 

20x disks for deep-fs05 and deep-fs06 

1x disk as spare one 

Disks configuration: 

RAID sets on each server: 

 deep-fs01 RAID1: 2x mirrored disks 

deep-fs02 RAID1: 2x mirrored disks 

deep-fs03 RAID6: 10x disks 

deep-fs04 RAID6: 10x disks 

deep-fs05 RAID6: 10x disks 

deep-fs06 RAID6: 10x disks 

Table 1: Characteristics and configuration of DEEP storage system 

Going more into detail about the characteristics of the system, there are 2 SAS cables from 

the JBOD to the switch, 1 cable providing connection to the 24 front side disks and 1 cable 

providing connection to the 21 rear side disks. Each server in a group1 sees also the disk 

space of the other server in the group and can make a fail over in case of the absence of the 

partnering server. The separation of the disks is done by zoning on the SAS switch. On each 

                                                
1
 There are 3 groups in the system, the one formed by deep-fs01 and deep-fs02, the one formed by 

deep-fs03 and deep-fs04 and the one formed by deep-fs05 and deep-fs06. 



D4.3  Definition of test cases and patterns 

11 

DEEP-ER - 610476  09.12.2015 

RAID set a standard ext4 file system was created. Because the write performance of the 

RAID6 sets was poor, the stripe_cache_size on the md devices of the servers deep-fs03 to 

deep-fs06 has been increased from 256 to 16384. 

Regarding BeeGFS, the current version is 2014.01.r8, installed in July 2014. The BeeGFS 

services2 are running in the DEEP Cluster according to the distribution shown in Table 2. 

DEEP Cluster 

node 

DEEP Cluster 

node description 

BeeGFS roles BeeGFS services 

deep-fs01 Storage node Management, Metadata, 

Administration, Monitoring 

fhgfs-mgmtd, fhgfs-

meta, fhgfs-admon 

deep-fs02 Storage node Metadata fhgfs-meta 

deep-fs0[3-6] Storage nodes Storage fhgfs-storage 

deep[1-128] Compute nodes Client, Helper fhgfs-client, fhgfs-

helperd 

deepm Administration 

(master) node 

Client, Helper fhgfs-client, fhgfs-

helperd 

deepl Login node Client, Helper fhgfs-client, fhgfs-

helperd 

Table 2: BeeGFS services in the DEEP Cluster 

The BeeGFS parallel file system is mounted in the DEEP Cluster compute, administration 

and login nodes under /work. Figure 1 illustrates the servers and storage concept for the 

DEEP Cluster. 

                                                
2
 See the BeeGFS online documentation [BeeGFS website] for details about the services. 



D4.3  Definition of test cases and patterns 

12 

DEEP-ER - 610476  09.12.2015 

 

Figure 1: DEEP Cluster and storage concept (note that FhgFS is the old name of BeeGFS) 

2.2 NVM evaluator 

One key component of the DEEP-ER concept is the use of node-local storage to 

complement a traditional parallel file system attached to I/O nodes. As a first step in 

evaluating this architectural design, we have obtained 2 units of a state-of-the-art PCIe-

based SSD, which uses the recent NVMe industry standard interface. As part of WP4 we 

have designed a test methodology for these early SSD samples. 

The purpose of the NVM test setup is threefold: 

1. to assess the performance of the NVMe SSD in order to provide performance 

parameters for the DEEP-ER application developers; 

2. to assess the potential impact of the performance gains from NVMe over SATA 

alternatives for a subset of (unmodified) DEEP-ER applications; and 

3. to assess how I/O system software (e.g. file system) can be tuned to exploit the 

performance characteristics of the NVMe SSD. 



D4.3  Definition of test cases and patterns 

13 

DEEP-ER - 610476  09.12.2015 

2.2.1 System architecture of the NVM evaluator 

Our initial NVM testing will use P3700, the latest generation NVMe SSD from Intel. Two of 

these devices were installed in two PCIe slots of the ñknc2ò machine, which is one of the two 

Xeon-Phi-equipped test machines at JSC. The ñknc2ò machine is currently configured with 2 

Xeon Phis and 2 P3700s. For future tests with larger applications, one of the P3700s can be 

moved to ñknc1ò. Both machines run CentOS 6.4. A diagram depicting this set-up is given in 

Figure 2. 

 
Figure 2: Test machines at JUELICH where the NVMes are mounted 

  



D4.3  Definition of test cases and patterns 

14 

DEEP-ER - 610476  09.12.2015 

3 Test methodology 

Testing on the DEEP Cluster and NVM evaluator will be done at three levels: 

¶ With synthetic benchmarks. For the DEEP Cluster, I/O benchmarks like IOR and 

partest, as well as a metadata benchmarks like mdtest, will be used on a regular 

basis, together with checks for testing the consistency of the results (LinkTest). For 

the NVM evaluator, standard storage I/O micro-benchmarks commonly used to 

measure disk and file system I/O performance will be used. Examples of such micro-

benchmarks include IOzone [IOzone website] and FIO [FIO website]. The goal of this 

testing is to characterise the baseline performance of the DEEP I/O layers, as well as 

of the new NVMe SSD and to identify the I/O strategies required to achieve peak 

performance. 

¶ With mock-ups of some of the DEEP-ER applications. For this testing, we will use 

synthetic applications that behave similarly to some key DEEP-ER applications in 

terms of I/O. More specifically, the exact computation is replaced by spin-loops and 

only the memory access and I/O access are modelled in detail in terms of the 

read/write characteristics. In addition to simplifying the experimentation process, this 

approach also allows the parameterization of the I/O behaviour to model a larger 

variety of inputs than it is possible with the real applications and their input sets. The 

goal of this testing is to characterize the expected performance of the mock-ups in the 

DEEP-ER I/O Architecture and how they benefit from the improved performance 

characteristics of the NVMe SSD. 

¶ With real DEEP-ER applications. For this testing, we will use some of the actual 

DEEP-ER applications. To run on the NVM evaluator, scaled down versions will be 

used, more specifically, versions of the applications especially set up to run on one or 

two nodes. We expect again to characterize the performance of the DEEP-ER I/O 

layers and to get a better understanding of how the applications behave with the 

NVMe SSDs. The aim in the end is to obtain more accurate results about the impact 

that the different DEEP-ER I/O strategies and the special NVM devices have on the 

applications. 

The corresponding testing tools will be integrated in the JUBE benchmarking environment 

(see Section 4). 

  



D4.3  Definition of test cases and patterns 

15 

DEEP-ER - 610476  09.12.2015 

4 JUBE 

Benchmarking activities should be automated to guarantee fair and reproducible 

comparisons between different platforms or environments. Automated benchmarking also 

simplifies the managing of different combinations of parameters in a large parameter space 

and reduces the risk of introducing errors in the process.  

The JUBE Benchmarking Environment enables a systematic benchmarking and allows 

adapting custom workflows to new architectures. In DEEP-ER, JUBE will be used to 

automatic test and analyse the DEEP-ER I/O Architecture, its usability, performance and 

overheads. 

4.1 Description JUBE 

4.1.1 File format 

The input file-format for JUBE uses the well-spread markup language XML. JUBE offers 

schema-validation files, which help preventing syntactic errors already in editors that support 

schema validation before an input file is actually parsed by JUBE. The structure is designed 

to reduce the amount of text duplication while retaining enough verbosity to debug possible 

problems. 

4.1.2 XML structure 

In this section we give an overview of a simple JUBE XML file. 

JUBE uses the jube  tag as its root. Inside there is a benchmark  element which includes the 

actual benchmark description. See for instance the following example of JUBE XML file: 

 

One of the key functionalities of JUBE is the separation of data and commands in a way that 

allows commands with different input data to be executed in a similar manner. This concept 

is most obviously reflected in the parameterset  elements inside the benchmark  tag. By 

adding multiple possibilities to a parameter  inside a parameterset , JUBE will 

automatically use each possible combination. A possible example is shown in the previous 

code listing. It runs an application with different compile options (e.g. "O1" and "O3") and 

<jube>  

  <benchmark name="parameterspace" outpath="bench_run">  

    <! --  Configuration -- > 

    <parameterset name="param_set">  

     <! --  Create a parameterspace out of two template parameters -- > 

     <parameter name="compile_opt"> - O1, - O3</parameter>  

     <parameter name="nodes" type="int">1,2,4</parameter>  

    </parameterset>  

 

    <! --  Operation -- > 

    <step name="run_something">  

     <use>param_set</use> <! --  use parameterset "param_set" -- > 

     <do>echo "$com pile_opt $nodes"</do> <! --  shell command -- > 

    </step>  

  </benchmark>  

</jube>  



D4.3  Definition of test cases and patterns 

16 

DEEP-ER - 610476  09.12.2015 

using different numbers of nodes (e.g. 1, 2 and 4). JUBE would then run this benchmark for 

all combinations of compile options and number of nodes which are, for this example, the six 

combinations ("O1", 1), ("O3", 1), ("O1", 2), ("O3", 2), ("O1", 4) and ("O3", 4). 

The actual execution is described in the step  element which is also part of a benchmark . It 

defines a single block of execution, e.g. a compilation with the relevant parameters. 

Furthermore, it describes the dependencies to other steps, e.g. an execution needs the 

compilation to be performed first of all. 

As a final task the performed benchmarks should be analysed. This process is split into the 

analyze r  part and the result  part. An example is shown in the following code listing: 

 

The analyzer  element describes the data to be extracted and how to extract it, which in this 

case uses the patternset  ñpatternò on standard output. Using this data result  defines 

how the extracted data should be shown to the user. For the above code listing this means 

<?xml version="1.0" encoding="UTF - 8"?>  

<jube>  

  <benchmark name="result_creation" outpath="bench_run">  

    <! --  Configuration -- > 

    <parameterset name="param_set">  

      <! --  Create a parameterspace with one template parameter -- > 

      <parameter name="number" type="int">1,2,4</parameter>  

    </parameterset>  

 

    <! --  Regex pattern -- > 

    <patternset name="pattern">  

    <pattern name="number_pat" type="int">Number:  $jube_pat_int</pattern>  

    </patternset>  

 

    <step name="write_number">  

      <use>param_set</use>  

      <do>echo "Number: $number"</do>  

    </step>  

 

    <! --  Analyse -- > 

    <analyzer name="analyse">  

      <use>pattern</use> <! --  use existing patternse t -- > 

      <analyse step="write_number">  

        <file>stdout</file> <! --  file which should be scanned -- > 

      </analyse>  

    </analyzer>  

 

    <! --  Create result table -- > 

    <result>  

      <use>analyse</use> <! --  use existing analyzer -- > 

      <table name="result" style="pretty" sort="number">  

        <column>number</column>  

        <column>number_pat</column>  

      </table>  

    </result>  

  </benchmark>  

</jube>  



D4.3  Definition of test cases and patterns 

17 

DEEP-ER - 610476  09.12.2015 

printing a human-readable ASCII formatted table with the columns containing the original 

number as the first column and the number which is extracted from the output of the 

according step as the second column. The patternset  makes use of the pre-defined 

regular expression pattern $jube_pat_int  and the result is just the same as the original 

number for this example. 

Since this overview does not try to replace the JUBE tutorial only some basic features are 

described. These should give the reader a rough idea of the design principles and general 

usage of JUBE. 

4.2 Further documentation JUBE 

A complete and detailed documentation including tutorials for getting started, a description of 

the more advanced features and a reference describing all available functionality can be 

found in the online documentation [JUBE website]. 

4.3 Integration JUBE 

JUBE is designed to be non-blocking for operations like sending jobs to a queuing system. 

This is often preferable since waiting for batch jobs to finish can be quite time-consuming and 

should not interrupt the usual work flow. However, this behaviour is undesirable in DEEP-ER, 

where JUBE is to be integrated in a time-based job scheduler and where I/O benchmarks 

should be prevented from being run in parallel. Since I/O uses shared resources, running 

different benchmarks in parallel would cause interference and hence render the results 

useless. Therefore, JUBE includes the jube-autorun shell script which eases the task of 

running JUBE synchronously. This script will be used to perform continuous benchmarks in 

special reservations. The frequencies will most likely be daily or weekly, depending on the 

duration of the benchmark and the need for changes in the codes. 

Two kinds of benchmarking will be performed. The first with mostly constant benchmarks, 

which will be used to measure changes in the system performance, for example when driver 

changes are applied or hardware is substituted. The second with application-benchmarks to 

measure the change in application performance over time, for example due to integration of 

new I/O strategies or modifications in the I/O libraries used by the application. 

  



D4.3  Definition of test cases and patterns 

18 

DEEP-ER - 610476  09.12.2015 

5 Synthetic benchmarks 

The following set of synthetic benchmarks will be integrated in the JUBE benchmarking 

environment to analyse the DEEP-ER I/O components: IOR, mdtest, partest and LinkTest. 

¶ IOR: is a standard I/O benchmark and will be used to set a baseline read and write 

performance in the test environments. In some cases, like in the NMV evaluator, 

another similar standard I/O benchmark might be used such as IOzone or FIO, which 

might be more suitable for the platform (for instance by performing single client I/O 

throughput experiments). Due to the similarities between the aforementioned 

benchmarks and IOR, we have chosen to only include the description of this last one 

in this deliverable. A complete description of IOzone and FIO can be found online 

[IOzone website][FIO website]. 

¶ mdtest: will be used to get a baseline performance for metadata operations like open, 

stat and close on files and directories. 

¶ partest: is part of the SIONlib installation and will be used to test different I/O 

strategies in a similar way to IOR.  

¶ LinkTest: is not, strictly speaking, an I/O analysis tool but a parallel ping pong test 

between all possible MPI connections. The LinkTest will allow us to detect possible 

anomalies in the functioning of the DEEP-ER Interconnect, which might interfere with 

the I/O performance measured by the I/O benchmarks. 

5.1 IOR 

The IOR benchmark [IOR website] can be used for testing the performance of parallel file 

systems in HPC. The software uses MPI for process synchronization. 

IOR provides the capability to test aggregate I/O rates via several typical middleware libraries 

including MPI collective I/O calls and HDF5 library calls, in addition to POSIX I/O calls. Input 

arguments allow, among others, to determine the variance of the overall I/O size, individual 

transfer size, file access mode (single shared file, one file per client), and whether the data 

are sequentially or randomly accessed. These and other inputs can be used to mimic the I/O 

patterns of real HPC applications. 

5.1.1 IOR test cases for DEEP-ER 

IOR will be used to measure the baseline I/O-performance of the BeeGFS global parallel file 

system, in which the infrastructure for I/O operations in the DEEP Cluster is based. 

Performing the measurement on a regular basis will help us to assess the consequences of 

changes in the cluster, as well as in the applications themselves. This task will be done with 

help of the JUBE benchmarking environment (see Section 4). In order to obtain this 

performance reference, different test cases with different parameter-sets have been 

identified. 

Test runs have shown that the parameters3 displayed in Table 3 are relevant for the tests, 

whereas the remaining IOR parameters do not need to be modified (i.e. are set to default). 

Parameter Values 

                                                
3
 For a description of the whole set of parameters and its default values please check Annex A. 



D4.3  Definition of test cases and patterns 

19 

DEEP-ER - 610476  09.12.2015 

Parameter Values 

api POSIX / MPIIO 

reorderTasksConstant 1 (true) 

taskPerNodeOffset 1 

filePerProc 1 (one file per task) / 0 (shared file) 

segmentCount 1 

blockSize 4 GiB 

transferSize 8 MiB, 128MiB 

Table 3: IOR relevant parameters 

For the tests on the DEEP Cluster, we assume that transferring more than 4 x 32 GB = 128 

GB per session should avoid any write-caching effect as this is the total RAM size of the 

storage servers.4 As for the test cases, we identified a small test case to run in 8 nodes, a 

medium one to run in 32 nodes, and a big one to run in 64 nodes: 

 Small Medium Big 

Number of tasks 128 128 256 

Nodes 8 32 64 

Tasks per node 16 4 4 

API MPIIO/POSIX MPIIO MPIIO 

Files per process 0/1 0 0 

Reorder tasks constant 1 1 1 

Transfer size 8 MiB 128 MiB 128 MiB 

Block size 4 GiB 4 GiB 4 GiB 

Aggregate size 512 GiB 512 GiB 1024 GiB 

Table 4: IOR test cases 

5.2 mdtest 

The mdtest benchmark [mdtest website] will be used to investigate the speed at which 

metadata operations are performed using the BeeGFS file system. mdtest uses MPI to 

coordinate the operations and collect the results. 

The benchmark allows selecting the number of files per process which are to be created, the 

depth of the directory structure, the number of MPI threads to perform the test among others. 

                                                
4
 We have 4 storage servers (deep-fs0[3-6]) with 32 GB RAM each. The 2 metadata servers (deep-

fs0[1-2]) donôt need to be taken into account for avoiding the write-caching effect. See Section 2.1.1 
for more details about the system architecture. 



D4.3  Definition of test cases and patterns 

20 

DEEP-ER - 610476  09.12.2015 

5.2.1 mdtest test cases for DEEP-ER 

As most of the DEEP-ER applications are using the POSIX I/O interface to perform task local 

I/O, it might be interesting to check how the file system performs when applications scale up 

and significantly increase the number of processes, putting a huge burden on the file system 

metadata service. This can be nicely simulated making use of this benchmark test. 

For the tests, taking into account the I/O requirements described in Deliverable D4.1 [D4.1], 

we make the following assumptions about the intended use of the parallel file system: 

¶ A large number of temporary files are created and later deleted, i.e. the performances 

of file create and delete operations are critical. 

¶ The directory structure is kept flat, i.e. performance of directory create and delete 

operations is not relevant. 

¶ The performance of any other operation changing the file system metadata like link 

creation or deletion, file status get and set operations etc. is not critical. 

Table 5 shows, from the whole set of mdtest parameters5, those relevant for the DEEP-ER 

tests. 

Parameter Description 

-n <items_per_task_per_tree> every task will create/stat/remove # files/dirs per tree 

-F perform test on files only (no directories). 

-C only create files/dirs 

-z <depth> depth of hierarchical directory structure 

Table 5: mdtest relevant parameters 

With these parameters, a series of test cases have been identified (see Table 6). 

Total number of files created 65536 65536 65536 65536 65536 65536 

Number of files per task 16384 4096 1024 4096 1024 256 

MPI tasks 4 16 64 16 64 256 

Nodes 2 8 32 2 8 32 

Tasks per node 2 2 2 8 8 8 

Directory depth 1|2 1|2 1|2 1|2 1|2 1|2 

File creation only/File delete -C|- -C|- -C|- -C|- -C|- -C|- 

Table 6: mdtest test cases 

5.3 partest (SIONlib) 

As part of the SIONlib installation, partest is a tool for benchmarking parallel I/O. It offers 

options to test specific parameters for different I/O strategies such as MPI-IO, task-local files 

and SIONlib. 

Configuring benchmarks with partest is done via command line arguments. All parameters 

have default values, so only those which differ from the default settings need to be set. In 

                                                
5
 See Annex B for the whole set of parameters. 



D4.3  Definition of test cases and patterns 

21 

DEEP-ER - 610476  09.12.2015 

order to obtain a complete list of all available commands and their default values the "--help" 

argument can be used. In the results output partest prints a list of all variables used for the 

benchmark, including the default ones. These are then followed by the time measurements 

for the read and write operations. 

5.3.1 partest test cases for DEEP-ER 

For the DEEP-ER Platform the 0 and 36 test types will be the most suitable and both will be 

used. The type 0 test is a SIONlib standard test. It uses collective calls for opening and 

closing files but all the write or read calls in between do not need any further communication. 

For small systems like the DEEP System and the later DEEP-ER Prototype, writing task-local 

files (test type 3) is likely to be the reference value for maximum performance since the 

metadata server is unlikely to be the bottleneck when performing I/O. The metadata 

performance should be benchmarked using another tool like mdtest (see Section 5.2). 

The buffer size will be chosen similar to the file system block size, which is 512 kB on the 

DEEP Cluster. 

The parameter "localsize" will be set so that a usage of roughly a third of the available RAM 

is used if summed up over all tasks per node. This reduces caching effects of the file system. 

For more information the option "verbose" might be used, which shows statistics for all 

individual tasks. This is only useful for small setups (< 32k tasks). 

In order to test the actual write performance and reduce the effect of caching by the system, 

tests with and without the "posix" option will be used. Without this option the standard ANSI 

"fwrite" would be applied, which buffers data internally, typically with a buffer size of one file 

system block. 

For checkpointing, the benchmark setup should use the collective interface ("collread" and 

"collwrite"). In addition to this option the environment variable "SION_COLLSIZE" needs to 

be set. In contrast to the standard SIONlib behaviour, which only uses collective calls for 

opening and closing files, in collective mode also the read and write calls are collective. 

Therefore, nodes are grouped by the caching layer to which they have access, and all but 

one node in a group do send their data to the group collector, which then performs the actual 

write operation. 

Another way of reducing caching effects is to use "taskoffset", which cyclically shifts the task-

mapping between read and write phases. In this way each task, instead of reading its own 

data, reads the data belonging to another task. This is only useful for tests not using the 

caching layer, since it contradicts the storage concept, in which data is only available for 

some local group. 

5.4 LinkTest 

The LinkTest program is a parallel ping pong test between all possible MPI connections of a 

machine. The output of this program is a full communication matrix which shows the 

bandwidth and message latency between each processor-pair, together with a report 

including the minimum bandwidth. The program can also be used for communication stress 

                                                
6
 See Annex C with the partest parameter description. 



D4.3  Definition of test cases and patterns 

22 

DEEP-ER - 610476  09.12.2015 

tests by running it repeatedly for a specific duration. The LinkTest software has been 

developed by the Juelich Supercomputing Centre and is freely available [LinkTest website]. 

The LinkTest runs for n processors in n steps, where in each step n/2 pairs of processors 

perform the MPI ping pong test7. Assignment of MPI tasks is performed once at the 

beginning of the program, according to the underlying hardware and operating system (e.g. 

on Linux the hostname and rank/core are used for identification). The selection of the pairs is 

random but it is guaranteed that, after running all steps, all possible pairs have been 

covered. A top N analysis of the results is done and the poorest N connections are identified, 

where N can be specified by the user. SIONlib is used for writing an output file containing the 

results of the whole communication matrix. An analysing tool included with the software can 

be used to generate pattern files, a list of bad links, and a graphical output illustrating the 

communication matrix and providing a histogram about timings and bandwidths ranges. 

Several options and parameters can be passed to the program to target different aspects of 

the communication to be measured. The most important ones are the size of the messages 

being sent, the number of iterations, and whether to run in serialized or parallel mode. See 

the homepage [LinkTest website] for a detailed description on how to use the MPI LinkTest 

program. 

5.4.1 LinkTest test cases for DEEP-ER 

The LinkTest program is being used to check the status of the interconnect within the DEEP-

ER system. This includes the bandwidth and latency of single connections, as well as the 

overall capability of the network in terms of possible bottlenecks or congestion. To do so, the 

program has to be run with different setups: 

1. Latency check: This test is executed in serial mode for all possible connections (to 

include inter-node measurements, two tasks per node are being used). For latency 

tests the message size should be very small and is set to 1 byte. To get meaningful 

values, 10 iterations are sufficient for the ping pong execution. 

2. Bandwidth check: Just like the latency check, the bandwidth configuration is also 

started in serial mode with two tasks per node, but it uses large message sizes to 

measure the maximum bandwidth achieved for single connections. A messages size 

of 512 KB is applied. Test runs have shown that 50 to 100 iterations have to be 

performed to reduce the deviance of the measured values. Hence, the number of 

iterations is set to 75. 

3. Check for bottlenecks: To test the network topology for possible bottlenecks a large 

amount of parallel communication must be set up. Hence this test is executed in 

parallel mode using one task per CPU core. The number of iterations and the 

message size from the bandwidth test can be reused. 

To analyse the results of these benchmarks and their distribution, a graphical overview will 

be created using the analysis tool provided by the MPI LinkTest software. Problems of single 

connections, routing or hardware problems (e.g. faulty switches) ïall of them leading to 

special patterns in the communication matrix and to limited network capabilities when doing 

                                                
7
 The sender sends a message with a certain data size to the receiver and waits for a reply from the 

receiver. The receiver receives the message from the sender and sends back a reply with the same 
data size. 



D4.3  Definition of test cases and patterns 

23 

DEEP-ER - 610476  09.12.2015 

massive parallel communication, which then result in substantial drawback of bandwidthï, 

will be obvious from the generated output. Figure 3 shows the graphical output for an 

exemplary communication matrix for a serially executed LinkTest run using 4 nodes and 16 

tasks per node on the DEEP Cluster. 

 
Figure 3: Graphical output of the LinkTest communication matrix on the DEEP Cluster 

The legend on the right hand side of Figure 3 illustrates how the colours are mapped to the 

communication time (and bandwidth). The smallest size coloured squares within the 

communication matrix illustrate the performance of a single connection. Connections where 

both ends are identical (using the same MPI task) are located on the diagonal, which is 

coloured white since the communication time for these connections is assumed to be zero. 

As one can see, the colours reflect very well the positions of the tasks residing on the same 

host (4 squares bisected by the diagonal) and even the thread pinning on the CPUs (blue 

and purple colour within the 4 host squares), which turns out to be different depending on the 

host. The inter-node communication looks very consistent (green colour) implying that a fat 

tree network is available providing the same conditions (e.g. number of hops) for all 

connections between all the nodes. The little red square in the top left range of the matrix 

indicates that there is one connection that might have a problem and should be further 

investigated, since the bandwidth achieved is much lower compared to the remaining inter-

node connections. 

Figure 4 shows a histogram for the above communication matrix, also provided by the 

graphical output of the MPI LinkTest software. The three types of connection pairs (same 

CPU, same node and different CPU, different nodes) show up as three peaks within the 

histogram. Additional information on the test run, e.g. number of iterations and message size, 

is provided in table format. 



D4.3  Definition of test cases and patterns 

24 

DEEP-ER - 610476  09.12.2015 

 
Figure 4: Histogram of the LinkTest communication matrix on the DEEP Cluster 

  



D4.3  Definition of test cases and patterns 

25 

DEEP-ER - 610476  09.12.2015 

6 Application-based benchmarks 

In order to characterize the DEEP-ER I/O Architecture, a series of application-based 

benchmark tests will be run, in addition to the synthetic ones described above, within Tasks 

4.5 and 5.5. Making use of different test cases, we expect to detect weak and strong scaling, 

as well as to probe the suitability of the DEEP-ER I/O software. 

The applications that will be used for the benchmark tests are iPiC3D, MAXW-DGTD, Radio 

Astronomy, Full Waveform Inversion and Chroma. The DEEP-ER applications8 TurboRVB 

and SeisSol wonôt be used for considering their I/O behaviour already represented by the 

patterns of the selected applications.9 

The iPiC3D and Chroma applications can make use of MPI-IO, the former one using as well 

the HDF5 high level I/O library. MAXW-DGTD has a task-local I/O schema and was 

described at first as non-I/O intensive. However, a checkpointing strategy has been added to 

the code which is likely to change this. The application from the BSC partner (Full Waveform 

Inversion) is I/O bound, where the I/O time for one step is one order of magnitude longer 

than it takes to compute it, so it makes a good candidate for exploring the scalability of the 

cluster. Finally, the Radio Astronomy application receives UDP station data and buffers it. 

After scattering blocks of data across the Booster Nodes and the processing part, the output 

data are buffered and written to disk. Within this deliverable we are interested in this last 

imaging part. 

In some cases, like for instance in the case of the Full Waveform Inversion application, we 

will be using mock-ups of the applications, which perform like the original ones regarding I/O, 

memory and compute load. This approach allows modelling a larger set of inputs than it is 

possible with the real applications and therefore is best suited for regular benchmarking. 

Just as with the synthetic benchmarks, we expect that regular testing and recording of the 

results will allow us to monitor the behaviour of the DEEP Cluster and NVM evaluator. To do 

this, the applications and mock-ups will be integrated in the JUBE benchmarking 

environment. 

The following subsections describe the main characteristic of the DEEP-ER applications from 

which application-based benchmarking will be done. In each application, its most important 

parameters have been identified. Different parameter-values will be selected to create 

various test cases, depending on the platform size and the specific benchmarking goals. The 

applicationôs I/O patters are also described below, giving already an idea of the kind of I/O 

measurements that can be performed with them. 

6.1 iPiC3D (KULeuven) 

iPic3D is a particle-in-cell (PIC) code that simulates plasma using a semi-implicit method. 

Like most PIC codes, it consists of two parts, a particle solver that simulates the motion of 

charged particles in response to the electromagnetic field, and a field solver that simulates 

the electromagnetic field evolution in response to "moments" (e.g. net current and charge 

density) of the particles. The domain is discretized with a regular 3D mesh, whose 

submeshes are distributed among the processes performing the simulation. The application 

                                                
8
 See Deliverable 6.1 [D6.1] for a complete description of the DEEP-ER applications. 

9
 See Deliverable 4.1 [D4.1] for more information about the I/O patterns of the applications. 



D4.3  Definition of test cases and patterns 

26 

DEEP-ER - 610476  09.12.2015 

is currently implemented with MPI, with ongoing efforts to implement an efficient OpenMP 

parallelisation. 

The structure of the application is sketched in Figure 5. The initialisation phase reads the 

input file, consisting of a simple text file that contains the basic parameters, such as the 

physical problem (initial and boundary conditions), the dimensions of the grid, the number of 

particles per mesh cell, the number of cycles to execute, and the frequencies with which 

field-data and particle-data should be written. 

Figure 5: Phases of the iPiC3D algorithm 

The initialisation phase can be very lightweight from the I/O perspective if the problem is 

mathematically determined, although it is also possible to initialize iPic3D by reading field 

and particle data. After every F cycles, fields are written to disk. Similarly, particles are 

written at every P iteration, with P larger than F, since the size of particle data is typically two 

orders of magnitude larger than the field data. Until now, I/O has never been a performance 

bottleneck for iPic3D. Nevertheless, the I/O scheme has recently changed to use parallel I/O, 

and the impact on the whole application runtime has yet to be analysed carefully. 

6.1.1 iPiC3D parameters 

The three main parameters that affect the current I/O behaviour are the number of mesh 

cells, the number of particles per mesh cell, and the number of MPI processes.  

¶ Number of mesh cells: determines the size of the field data.  

¶ Number of particles per mesh cell: together with the previous parameter, determine 

the size of the particle data.  

¶ Number of MPI processes: determines the number of processes that have to be 

synchronised when writing field or particle data. Additionally, there are two 

parameters to specify the frequency of fields and particles writing. 

 

# of processes Field output Particle output 

aƻǾŜ ǇŀǊǘƛŎƭŜǎ 

{ǳƳ ƳƻƳŜƴǘǎ 

!ŘǾŀƴŎŜ ŦƛŜƭŘǎ 

tŀǊǘƛŎƭŜ ǿǊƛǘƛƴƎ 

CƛŜƭŘǎ ǿǊƛǘƛƴƎ 

Lƴƛǘƛŀƭƛǎŀǘƛƻƴ 



D4.3  Definition of test cases and patterns 

27 

DEEP-ER - 610476  09.12.2015 

# of processes Field output Particle output 

1 ~24KB 4 MB 

4x4 ~384KB 64 MB 

16x16 ~6MB 1 GB 

64x64 ~96MB 16 GB 

256x256 ~1.5GB 256 GB 

1024x1024 ~24GB 4096 GB 

Table 7: iPiC3D test cases for 512 mesh cells per process and 128 particles per mesh cell (data per 

iteration) 

6.1.2 iPIC3D I/O patterns 

Under the current I/O scheme, one HDF5 file is generated every F iterations for field data 

and one HDF5 file is generated every P iterations for particle data, regardless of the number 

of processes. This increases the I/O overhead, since it requires synchronisation, but 

eliminates the need to merge data later as a post-processing step. The writing relies on 

H5hut, a library that uses pHDF5 and thus MPI-IO. 

6.2 MAXW-DGTD (Inria) 

The Inria application MAXW-DGTD is based on a Discontinuous Galerkin - Time Domain 

(DGTD) solver of the 3D Maxwell-Debye equation system. The solver is used to simulate the 

propagation of electromagnetic waves through human tissues of which the realistic geometry 

is accurately described by an unstructured tetrahedral mesh. 

At the beginning of the project, MAXW-DGTD was simply MPI-parallel. The cell-local finite 

element formulation of the DGTD method leads to favourable data-locality properties in the 

most processing-intensive loops. Thus, an OpenMP implementation has been developed and 

optimised.  

MAXW-DGTD consists of 3 phases: a pre-processing phase, the time-stepping loop, and a 

post-processing phase, which can be seen in Figure 6. The different steps behind this 

workflow happen in parallel, i.e. all the items are performed by all MPI processes. A newer 

version has replaced the blocking MPI_Sendrecv calls by non-blocking calls. 



D4.3  Definition of test cases and patterns 

28 

DEEP-ER - 610476  09.12.2015 

 
Figure 6: Phases of the MAXW-DGTD algorithm 

Typically about 90% of the execution time is spent in the time stepping loop, the other 10% 

are shared between the pre- and post-processing phases when no checkpointing strategy is 

used. 

6.2.1 MAXW-DGTD parameters 

There are two main parameters that influence the size and complexity of the calculations and 

therefore the size of the output:  

¶ The number of cells in the mesh (nt): it is provided by the mesh-file itself and cannot 

be changed by the user.  

¶ The order of the cell-local Lagrange polynomials (ñP1ò to ñP5ò): it can go up to 5 (ñP1ò-

ñP5ò) and is freely modifiable by the user. However, the problems that have been 

selected for DEEP-ER won't really benefit (in terms of precision) from an order higher 

than 3 for numerical reasons. Consequently, the cell-local polynomial order is typically 

set between 1 and 3, leading to a number of degrees of freedom per cell (ñnpò) 

ranging from 4 to 20.  

Other parameters also affecting I/O are: 

¶ The number of submeshes: it translates to the number of MPI processes (ònprocò) 

can also be set by the user. It typically ranges from 1 to 1024 in steps of the power of 

two. This number doesn't influence the amount of data subject to I/O; however, it 

changes the number of output files (as CP and final output is process-local).  

¶ The number of spatial points observed and the frequency of checkpoints writing also 

affect the I/O of the application.  

For a complete set of parameters see Table 8 which depicts several test cases. In this table, 

ñFinal timeò refers to the dimensionless physical time of the simulation run. 

 



D4.3  Definition of test cases and patterns 

29 

DEEP-ER - 610476  09.12.2015 

 ñHEAD P1ò ñWOMAN P1ò ñHEAD P3ò ñWOMAN P3ò 

#cells: nt 1853832 5536852 1853832 5536852 

#dofs per cell: np 4 4 20 20 

#proc: nproc 1<nproc<1024 1<nproc<1024 1<nproc<1024 1<nproc<1024 

Final time 2.5 5 2.5 5 

#time iterations 11 250 646 680 34 380 1 969 787 

Final output size 680MB 1.98GB 3.31GB 9.9GB 

CP size 1 GB 2.9GB 4.3GB 12.8GB 

Table 8: MAXW-DGTD test cases 

6.2.2 MAXW-DGTD I/O patterns 

I/O operations are performed in three phases of the application: 

1. In the pre-processing step the two input files are read; one contains the unstructured 

tetrahedral mesh, the other one holds the information needed to define the 

submeshes and the communication lists between those submeshes. When the 

application is run in parallel mode, every MPI thread reads both files and extracts the 

relevant data. The size of the two files combined is a few hundred Mbytes. 

2. In the time-stepping loop I/O is generally done at each timestep, with the loop 

consisting of a few tens of thousands of timesteps. In these I/O operations seven 

double precision real numbers per selected spatial point are written, with up to ten 

spatial points. Each point is written to a separate file. Which processes write the data 

depends on where the spatial points are located. 

3. In the last phase of the application, the post-processing, the calculated solution is 

written to several files in different forms. The physical fields are stored in the Fourier 

space for a given frequency. Each process writes its own file for the fields that are 

associated with the tetrahedra of its submesh. These files are of a total size of 96 x 

np x nt bytes respectively; np is the number of degrees of freedom in a tetrahedron 

when the interpolation order is p and nt represents the effective number of tetrahedra. 

The mesh sizes range from 1853832 to 5536852 cells. With the different orders of precision 

(ñP1ò-ñP3ò) this leads to the minimum and maximum sizes of (680 / nproc) MB and (9.9 / 

nproc) GB for the Fourier solution for each MPI process. 

In addition to these I/O operations, a simple checkpointing mechanism was integrated in the 

application. Each process writes to a corresponding file the fields that are required for a 

recovery of the computation. This is done every few iterations; the period can be chosen by 

the user. The necessary data are the E, H and P fields (e_field(np,3,nt), h_field(np,3,nt), and 

pol(np,3,nt)), the current time, the number of the iteration and the state of the Fourier 

transform (ufourl(np,3,nt) and ufour(6,nt)). The total size of the data is (120 np + 96)xnt + 12 

bytes per MPI process, which leads to a range of (1/nproc) GB to (12.8/nproc) GB of data per 

checkpoint, depending on the test case (see Table 8). 



D4.3  Definition of test cases and patterns 

30 

DEEP-ER - 610476  09.12.2015 

6.3 Radio Astronomy (ASTRON) 

To form an image of the sky, the signals from the radio telescopes' antenna stations are 

combined in a central signal processing (CSP) unit. First, the incoming signals are filtered, 

correlated, and integrated by the so called correlator pipeline. In general, as the amount of 

incoming data are too large to be stored, the correlation pipeline needs to be performed in 

real-time. While in the future the image reconstruction is likely done in real-time as well, 

currently, the output of the correlator (called visibilities: corresponding to samples in the 

image's Fourier domain) is stored on disk for later offline processing (see Figure 7). Second, 

in the so called science data processing (SDP) part, the visibilities are read from disk and, in 

different frequency bands, sky images are reconstructed. To remove instrumental and 

environmental effects, the image reconstruction includes instrument calibration and the 

creation of an accurate sky model to correct the visibilities. For different science cases, the 

image reconstruction includes further integration in time and frequency. 

 
Figure 7: Image processing pipeline used in Radio Astronomy 

6.3.1 Radio Astronomy parameters 

We introduce the symbols used in the following in Table 9. 

Symbol Meaning 

ὶ  number of receivers or antenna stations 

ὦ  number of baselines; ὦ ὶὶ ρ 

ὴ  number of polarizations per receiver (usually, ὴ ς) 

ὲÓÂ  number of frequency bands (subbands) per antenna station 

ίÓÂ  sample rate per subband 

ίÒ  sample rate per receiver, ίÒ ὲÓÂίÓÂὴ 

ὧ  number of channels each frequency band is split into in the CSP 

ὛÉÎÔ  integrated samples, i.e., given integration time ὝÉÎÔ, ὛÉÎÔὝÉÎÔίÓÂ 

ȿὠÓÂȿ  size of visibilities per time step for one subband, ὠÓÂ ÓÉÚÅÏÆcomplex<float>ẗ

ὦὧὴ 

ȿὡÓÂȿ  size of weights for visibilities; ὡÓÂ ÓÉÚÅÏÆint16_tẗὦὧ 










































